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I. INTRODUCTION

The Goddard Data Assimilation Office (DAO) is engaged in on-going operations and development using four
dimensional data assimilation (4DDA). It is being increasingly recognized that 4DDA methods are likely to play an

essential role in the understanding of processes involved in the earth system ([1]). Data Assimilation involves using the
latest models of the atmosphere and ocean along with estimation theoretic methods for melding actual observational

data (atmospheric, land surface, and oceanic) into the models so as to obtain a best estimate of the evolving state of
the system. This best estimate is evaluated as large datasets that are produced every three or six hours for mulit-year
periods of time, corresponding to past as well as up-to-date observations. The datasets are physically consistent,

gridded values of important physical quantities (wind speed, temperature, water vapor and trace chemical mixing
ratios etc.). In some cases accurate values of unobserved quantities can be provided, or values at the positions of the
observations that are more accurate than individual observations themselves. In others, the model equations help to

provide physical consistency constraints between distinctly different variables [2]. One of the main functions of the
DAO is to provide the datasets that result from these analyses to the large scientific community as part of NASA's

support for the national research effort into the earth's climate as well as global change. In the future most of the
data for our assimilations will be provided by satellites as part of NASA's Mission To Planet Earth (MTPE) project

[1].
The computational tasks are similar to those of operational weather prediction centers, but the computer require-

ments are probably larger because of the comprehensive data sets that must be provided by the DAO to the scientific
community. Apart from the computing needs of scientific and ongoing development research at the DAO, one of the

main users of resources is the 'Reanalysis' production projects. This is the process of running a multi-year assimila-
tion using historical data and a 'frozen' assimilation system. Typically the DAO will run a complete reanalysis for
the period 1979-present about once every two years. This will be done to take advantage of scientific and software
improvements in the system. At present the frozen version of the system is GEOS-1 DAS. An important metric of the

DAO's work is the number of days assimilated per wall clock day. At present, the reanalysis effort uses about 20 per-
cent of the resources of the Cray C98 at Goddard. In this mode GEOS-1 DAS produces about 30 days of assimilated

datasets per day of wall-clock time. This metric should be maintained even in the context of greater requirements

such as: higher resolution - the DAO is planning on running at 1 degree (longitude) by 1.25 degree (latitude) by 40
levels by 1998; apart from archived data one can expect that new data will increasingly become a strain on system
resources - the GEOS ])AS system ingests about 30 megabytes per assimilated day at present, and this is expected

to increase by an order of magnitude by 1998; finally, the more advanced Physical space Stastical Analysis System
(PSAS) that is at present being developed at the DAO will put more pressure on the data and computing resources in
the future. At present the production system (GEOS-1 DAS) uses a regionalized Optimal Interpolation (OI) analysis

system. In this algorithm only observations in a limited range of a model gridpoint are used to peform an analysis.
While this has been a successful approach for both climate and weather assimilation it has become clear that a global

approach is needed to obtain greater accuracy and to further the proposed advanced assimilation schemesi (such as

the Kalman filter). PSAS is the DAO's global assimilation system that is under development. Computational issues
resolved during the analysis and porting of the GEOS-1 DAS are very much relevant for the successful implementation
of PSAS on future scalable HPC platforms. The production system for PSAS is almost complete, and is expected to

replace OI at the DAO during 1996.
The DAO is developing a strategy for computing requirements in the next decade. One of the major goals of the

present 4DDA project was to ensure a smooth transition of DAO operations to future scalable HPC platforms that
will support orders of magnitude bigger comutational demands on the production assimilation system such as PSAS
• This involves:

1. An examination of the potential for parallelization and scalability of operational algorithms at DAO,

2. An examination of the potential for parallelization and scalability of candidate future algorithms at DAO, and

3. Porting and benchmarking of existing codes on testbed parallel architectures.

At the Northeast Parallel Architectures Center (NPAC), these tasks were associated with the following components
of the complete assimilation system:

1. Operational Mini-Volume Optimal Interpolation Analysis

2. Advection Algorithms for transport and GCM (Eulerian and Semi-Lagrangian)

The following two sections supply an overview of our major accomplishments and conclusions regarding the software
modules of the DAO assimilation system which were assigned to NPAC for evaluation, analysis and parallel devel-

opment. The overview is followed by a list of project publications (including the material available on-line through



the WWW).Subsequentchapterssupplyour research results and conclusions in tile form of detailed analysis of
computational issues for each software module.

II. OVERVIEW OF MAJOR ACCOMPLISHMENTS

A. Optimal Interpolation (OI)

A mini-volume based optimal interpolation algorithm is currently used at the NASA Goddard Data Assimilation

Office (DAO) for four dimensional data assimilation. Instead of using all observations to update a model forecast at
all of the model grid points, the analysis is performed on groups of grid points called mini-volumes. Only selected

observations in a preset vicinity of each mini-volume are used in each regional analysis.
We have explored two complementary approaches to parallelization of the OI code:

1. Task parallel approach

2. Data parallel approach

Task parallel approach is implemented as a Fortran 90 code with MPI message-passing library routines. It required
substantial rewriting of the original Cray F77 code. Restructuring of the sequential code was an essential requirement

for porting to parallel machines and it produced important improvements in the sequential algorithm as well. For

example, by sorting observational data along latitudes and longitudes, we achieved an improvement by a factor of
log(N)/N in CPU time for sequential quality control rotines, where N is the number of observational data items.

The resultant code is modular, easily extendable and highly portable, since it is built on standards like Fortran 90

and MPI. On top of the original code, we have developed general-purpose utilities for efficient distribution of data
structures and computational load in a heterogeneous metacomputer environment. These utilities are expected to be

not only useful for the data decompostion required for the newer PSAS algorithm, but have also provided a viable
strategy to the Suarez-HPCC (1992) grand challenge team on the parallelization of their development oceanic data
assimilation system that uses the Optimal Interpolation method. The parallel implementation is well suited for a

clustered environment or any distributed environment with large grain size. This work forms a basis of the Ph. D.
thesis of G. yon Laszewski, who is a graduate student at NPAC funded by the DAO.

Task parallel approach is based on the fact that construction and solution of the linear system of covariance matrices

can be done independently for each mini-volume. Our parallel programming strategy partitions all observations and

model (grid) data among processors at the beginning of the analysis. Thereafter, individual processors perform the
analysis for the mini-volumes assigned to them independently from one another. While this brings maximum speed-up
for the solver, it also leads to substantial data replication and redundant computations during the quality control
phase.

We performed benchmarks on IBM SP-2 for up to 40 processors and obtained very encouraging results. Extensive
analysis of the speed-up curves for core quality control and analysis routines are presented in the Appendix. Analysis

efficiency is in the 50 for moderate machine sizes (up to 40 processors). Incorporaton of dynamic load balancing
mechanisms we have developed, will bring the efficiency much closer to the theoretical limit of 100%. We expect

that the load-balanced code will have excellent scaling behavior in the massively parallel limit as well (hundreds of
processors).

The quality control routines also show excellent initial speed-up, but then saturates in the massively parallel

limit. The primary reason can be traced to redundant computations which have to be performed due to the overlap
regions between mini-volumes. As the processor number increases, computations within the fixed size overlap region
overwhelm the computations within each processor's domain. We showed how to improve the scalability of quality

control by exploring alternative grid partitions, as well as distributing the vertical dimension.
The problem of redundant computations in the quality control phase was also approached using a different strategy

based on data parallel programming model. We showed that quality control can be efficiently implemented using a
language such as High Performance Fortran. We parallelized sea-level quality control using CM Fortran, which is a
dialect of HPF available on Connection Machine series. We achieved 0.5 GFLOP sustained and 3.1 GFLOP peak on

a core quality control routine without any code tuning and on a small data set which did not make efficient use of
the vector units on a 256 node Connection Machine CM-5. This approximated, and even exceeded, the metric that

we set in negotiations at the beginning of DAO-HPCC (1992), where we estimated performance of 0.5 gigaflop/s for
key modules.

The implications of the above described work on the implementation of the quality control modules is rel-
evant to PSAS as much as to OI. This work is described in NPAC Technical Reports SCCS-713, SCCS-668
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and in a paper submitted to ECMWF conference. Substantial amount of information is available on-line, via
http://www.npae.syr.edu/projects/nasa. Certain generic routines which had to be developed for the HPF imple-

mentation (e.g. segmented bubble sort) are also available on-line via NPAC's High-Performance Fortran Applications
repository, http://www.npac.syr.edu/hpfa.

B. Transport

We have explored parallelization potential of both Eulerian and Semi-Lagrangian schemes for treatment of advection.
Eslerian schemes were examined in the context of van Leer/Prather chemistry transport DAO codes. Semi-Lagrangian

algorithm was abstracted from the experimental DAO shMlow water code.
Eulerian schemes are based on stencil computations so they can be very efficiently implemented in HPF. On some

hardware these algorithms can take advantage of physical proximity of processors in the communication topology

(MasPar, CM-5, Intel Paragon).
All aspects of the computation could be adequately expressed using array syntax of Fortran 90 and HPF standard

library. We have both HPF and CM Fortran versions of the parallel code. We developed a strategy based on

gather/scatter routines to deal with load imbalances due to polar sub-cycling. We achieved 2.5 GFLOPS sustained
and 6.8 GFLOPS peak on a 256 node CM-5. Due to excellent scalability, performance can be significantly higher on

bigger machines and bigger problems. Resultant parallel code was integrated using AVS framework into a Simulation-
on-Demand demo at NPAC and is available via http://www.npac.syr.edu/.

On the other hand, Semi-Lagrangian algorithm can be efficiently implemented only using a message-passing ap-

proach. It presents serious challenges for data parallel languages and compilers, due to communication imbalances,
unstructured communications and simulation driven (i.e. dynamic) communication patterns. The core interpolation

procedures in the Semi-Lagrangian approach are dominated by high-communication costs and parallel overheads due
to memory management and indexing. We have implemented a one-dimensional decomposition along lattitudes,

which communicates whole longitudinal strips between nodes which are configured as a logical ring. This approach
takes advantage of the fact that advection winds are mostly east-west, but it lacks scalability. The FLOP rate is
low because of the low FLOP count in the interpolation in comparison to book-keeping portions of the code. Our

experience with 1D decomposition shows that at high resolutions memory management and local integer computation
for indexing even becomes more important than communication overhead. This is one example where FLOP rate may

be completely misleading as a measure of succesful parallelization. The analysis of the parallelization of the shallow
water semi-Lagrangian code is available as NPAC Technical Report SCCS-694.
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IV. DATA PARALLEL IMPLEMENTATION OF EULERIAN TRANSPORT ALGORITHMS

Changes in the atmosphere produced by trace gasses may have profound environmental effects. Realization of this
fact renewed interest in development of constituent transport and chemistry models. Realistic modeling of atmospheric

transport is a large scale computational problem which can efficiently use massively parallel computers. This Section
summarizes our experiences and conclusions regarding the implementation of transport models on parallel computers.

Its focus is on one aspect of the models which is most significant from parallel computing point of view: treatment
of advection. Focus on advection is also motivated by the fact that it is important component in Global Circulation
Models.

,There is a number of important components of the complete problem which will be ignored for various reasons.
For example, we will not be concerned with chemistry, because it is local and therefore trivially parallel. Diffusion

processes on the other hand can be classified as stencil computations, just like advection, which implies that they
do not bring new problems beyond those encountered in advection. Finally, there is a completely different set of
issues related to I/O and system integration, which is given in the Section on Metacomputing and Data Assimilation.

Particularly interesting problem is the interface between transport models and assimilated data sets in the complete
data assimilation system, shown on the data flow diagram of the complete assimilation system in the Appendix.

The parallel system was evolved from the sequential transport code [3] developed at NASA/Goddard, which em-
ployed Van Leer scheme for horizontal advection and Prather scheme for advection in the vertical. We will first briefly
describe the basics of these two algorithms. A thorough exposition of van Leer method and its application to the

atmospheric transport problems is given in [3]. Then we will describe High Performance Fortran (HPF) programming
model [13], followed by the exposition of its features which were used to implement advection algorithms. A complete

set of tutorials and reference materials on HPF can be obtained on-line [12]. We will compare HPF implementation
with a message passing (MP) implementation of Van Leer algorithm. Finally, we will generalize our conclusions to
similar scientific applications.

A. Continuity Equation

The fundamental equation for modeling dynamics of ozone and other chemical constituents in the atmosphere is the
mixing ratio continuty equation. The constituent mixing ratio D = C/M is defined as the ratio of constituent density
C and the background air density M. At NASA/Goddard Space Flight Center, continuity equation was adopted to

spherical coordinates of their assimilated data model, which provides horizontal wind components and temperature
field as inputs for the transport code.

The coordinates of the model are: latitide ¢ and longitude A in horizontal and cr pressure levels in the vertical.

We will also refer to the latitude, longitude and vertical direction as X, Y and Z respectively. Horizontal coordinates
are partitioned onto a constant spacing (A¢, A)_) latitude- longitude grid. Earth radius is denoted by R. Vertical

coordinate has eight sigma levels in the troposphere and eleven sigma levels in the stratosphere. The interface pressure

is Pint = 120mb and the topmost level has pressure Prop = 0.305mb. If we denote by p_ pressure at level k of the
vertical grid and by P,I¢ the surface pressure, then sigma coordinate for k-th level on the vertical grid is given by
crk = (Pt: -pint)/H. H is the pressure difference which is given by II = Pint -Prop in the stratosphere and II = P_Ye-Pint
in the troposphere. Wind components will be denoted by U and V in latitude and longitude direction respectively,
while the vertical wind components is W.

Since we are interested in the implementation of advection algorithms only, we will not include local chemical

sources and sinks. With this restriction, the three-dimensional continuity equation for the constituent mixing ratio is:

The first term on the right-hand side describes changes in mixing ratio due to pressure variation. The second and
third terms arise from horizontal advection, and the last term is due to vertical advection. We will discuss later each

of the terms in this equation in detail, since each one of them imposes a different computation and communication
structure when the variables are represented by arrays and mapped onto a parallel architecture. First we turn to the

description of advection algorithms.

B. Van Leer Algorithm

Horizontal advection terms are implemented using the van Leer algorithm, which is an upstream-biased monotonic

gridpoint transport scheme. It exhibits self-limiting diffusion, but the upstream bias gives it a pseudo-lagrangian



characterwhichdrasticallyreducesphaseerrors.Amongits majoradvantagesareitssimplicityandknownabilityto
time-split.Its localnatureprovidesgooderrorpropagationcharacteristics.Thisis veryimportantwhentransport
windsareobtainedfromassimilateddatasets,whichhavealotofnoisein thepolarregions.Becauseit ismonotonic,it
doesnotrequirefillingtopreservepositiveconstituentdensities,whichisimportantif correlationsamongconstituents
haveto beconserved.

Wewill describethealgorithmusingtheonedimensionaladvectionequation:

06' 0(uC)
a-q-+ - 0 (2)

which is discretized as:

Cjn+l n At
+112= C +1/2 - (3)

Azj+I/_

The notation is as follows: integer index j denotes boundary between adjacent ceils, where time-averaged fluxes _j

and velocities uj are defined, index j + 1/2 denotes cell centers, where density Cj+1/2 is defined, n is the time-step
index, while At and Axj+l/z denote, as usual, temporal and spatial grid intervals.

Time-averaged fluxes are given by:

1 (ujA,- sgn(uj))ArC] (4)'b = [ca - \

where r = j-(1/2)sgn(uj). One possible choice for the finite difference operator ArC which guarantees monotonicity
is given by (0 denotes step function):

ArC -_ 2(Cr - Cr-1)(Cr+l - Cr)O((Cr - Cr-1)(Cr+, - Cr))/(Cr+l - Cr-1) (5)

Equations 3, 4 and 5 constitute basic equations of the van Leer method. Horizontal advection is performed for

latitude and longitude directions independently and the corresponding changes in the mixing ratio are added before
the vertical advection step is performed.

C. Prather Algorithm

Prather algorithm is non-diffusive, it satisfies conservation laws by construction, and it is stable up to the CFL
limit. It is based on conservation of second-order moments of constituent mixing ratio D during advection. The

latitude-longitude-sigma pressure level grid divides the whole physical volume into a number of small boxes. The
extent of k-th box along a-coordinate direction is _ = crk+l -- ak. Within each box, mixing ratio is represented by a
linear combination of orthogonal second order polynomials:

D(cr) -" moDo(a) + mlD,(_r) + m2D2(a) (6)

where

D0(cr) = 1

D,(cr) = a - _/2 (7)

D2(tr) = Cr:_-- _O""4- _2/6

Since we are using this method to treat vertical advection only, there is no horizontal spatial dependance within a
box. Moments Si of the mixing ratio distribution are obtained as integrals over a box volume:

mid_Si = daD(a)Di(a) = (i ÷ 1)! (S)

The advection step is treated as a process of deconstructing and reconstructing boxes in such a way that second-
order moments are conserved. For the sake of simplicity, we will assume that vertical wind component W is in the

direction of increasing _. Each box (k) is split into two sub-boxes: (1) the first sub-box contains mass which will
remain in the box and its bounds are given by ak < a < ak+l -- WkAt, (2) the second sub-box contains mass which

will be transported to the downstream box (k + 1), and it is bound by _rk+l- We At < ak+t. For each of the sub-boxes



onerepresentsmixingratiodistributionusinganappropriatesetof orthogonal polynomials (c.f. equation 7), with
respect to the sub-box's own center of mass. The corresponding moments for each of the sub-boxes will be denoted

by superscripts L (for the first sub-box) and U (for the second sub-box). If we denote by a the ratio of volumes of

the U (i.e. transported) sub-box to the original box, the moments of the sub-boxes can be reconstructed from the
moments of the original box:

So_ = a [So+ (1- a)S, + (1- a)(1 - 2_)S_]

S[ = _' [S,+ 3(I - _)S_I

s[ = _s_ (9)

• so_ = (1 - _)[So - _s, - _(1 - 2_)s4

s,L = (1 - _)'(s, - 3_s_)

S# = (1 - a)3S=

Prather advection step consists of computing sub-moments U and L for each of the grid boxes and then trans-

porting the U moments to the respective downstream boxes. The distribution after the advection step is obtained
by reconstructing new moments in each grid box from the masa that was left in a box during the advection step (L

moments) and the newly transported mass (U moments from the upstream box). This implies that sub-morpents of

the reconstructed box (k + 1) after the advection step are:

SiL(k + 1) = Sir(k) S_(k + 1) = S['(k + 1) (10)

Given these sub-moments one can compute the moments of the complete grid box:

So= + Sk
S1 = aS_rl + (1 - (x)S_ + 3(1 - (X)Sov - 3_SoL

$2 = e2S[ + (1 - a)2S2L + 5a(1 - e)(S[ - S_) + 5(1 - 2e)(1 - e)Sou - 5e(1 - 2a)SoL

(11)

Given the new moments of the full grid box, one can easily compute moment coefficients mi and the quadratic

polynomial which describes new mixing ratio distribution (c.f. equations 6 and 8). All moments must be initialized
prior to the calculation. In case of full three-dimensional Prather advection there are alltogether 12 moments, including

the off-diagonal ones (xy,yz,zx).

D. Parallel Implementation Strategies

Extrapolation of current trends in high-performance computing indicates that Multiple-Instruction Multiple-Data
distributed-memory architectures will probably be the most cost-effective hardware platforms. This includes tightly
coupled systems as well as networked workstations, which are conceptually similar. The only important difference is
that tightly coupled systems have much higher communication bandwidth, which means that they can better exploit

finer grain parallelism. We will discuss implementation of transport algorithms on MIMD platforms.

Advection algorithms may be characterized as data parallel, since both van Leer and Prather methods require that
the same sequence of computations be applied to all elements of data arrays. In this case domain decomposition is
an effective parallelization strategy. The arrays are partitioned among the processors (nodes) of a parallel machine

and each node performs the same set of computations on array elements it owns. Whenever a computation requires

knowledge of array elements owned by another node, messages are exchanged between the two nodes. The structure
of the parallel code then consists of segments where independent computations are done within each node, followed
by segments where information between nodes is exchanged via calls to message-passing library routines. The code
can be structured so that the same program is executed in every node, but nodes may branch according to their

processor ID, which is essential for scheduling of SENDs and RECEIVEs in the communication phase. This is known
as the Single-Program-Multiple-Data (SPMD) programming approach. It should be noted that communication calls

in SPMD programs frequently provide implicit synchronization barriers, since the computation cannot proceed until
the required array elements are received by all of the requesting nodes. Advection algorithms can be classified as

loosely synchronous.
The SPMD parallelization strategy with explicit message-passing requires that programmer manages computation

and communication phases. Until recently, that was the only possible approach on the majority of parallel architec-

tures. While this approach allows maximum flexibility it requires substantial effort to be expanded for communication

scheduling and local memory management. The programmer also has to take into account hardware parameters and



topologyinorderto produceefficientcodebyminimizingcommunicationcosts.Message-passingcodeislitteredwith
callsto communicationlibrarieswhichhavenothingtodowiththebasicalgorithmto beimplemented.Thisreduces

code legibility and makes the whole process of parallel application development more error prone.

Another approach is to design new high-level langauges which will preserve, at the application level, two basic
tenets of sequential programming: single thread of control and global name space. We implemented atmospheric

transport code in High Performance Fortran, which is among the most prominent of such languages. HPF language
specification is a de facto standard adopted in 1993 as a result of collaboration of academic institutions and hardware

and software vendors. Dialects of HPF already existed on Connection Machine and MasPar computers and at least
4 compilers are expected to be commercially available in 1995.

The basic principle of HPF is that parallelism must be explicitly stated by the programmer. For example, the
compiler does not attempt to discover parallelism by a sophisticated dependency analysis of loops, which is an

approach taken by other parallel languages. There are basically three ways a programmer expresses parallelism: array
syntax, parallel constructs and compiler directives, ttPF may be considered a superset of Fortran 90 with a small

number of extensions to support effective use of MIMD machines. In both Fortran 90 and HPF arrays are first class

objects. Array syntax allows the programer to manipulate complete arrays and to express parallelism transparently:
since the array elements are distributed among the nodes of a parallel processor, an array instruction is executed

by all nodes simultaneously. Translation between addreses in the global name space and addresses of array elements
in local node memories is done by the system. Also, if the array operation requires that array elements be.fetched

from remote node memories, appropriate communication calls are generated by the compiler transparently to the

programmer. Array syntax alone is not sufficient to guarantee good performance. Non-uniform memory access on
MIMD computers implies that data locality is crucial for good performance. Because of that, some of the most

important HPF extensions to Fortran 90 consist of compiler directives for data distribution among nodes, which

provides the programmer with a set of high-level tools for management of data layout. At present, only simple
and regular layouts can be achieved using compiler directives, in contrast to the flexibility of the message-passing
approach. New mechanisms are being developed to provide users with a standard interface to flexible data partitioners
via compiler directives.

We will now describe HPF features which were used to implement the 3D van Leer/Prather sequential transport
code on parallel platforms. Whenever appropriate, we will make a comparison with the 2D van Leer message-passing
code, and discuss new language features which would be beneficial for this one and similar applications.

E. Parallel Implementatlons of Atmospheric Transport

1. Data Layout

Domain decomposition strategy requires that arrays be distributed among the nodes of a parallel machine. HPF
provides a set of compiler directives which determine mapping of individual array dimensions onto the processor array.
This mapping is generally achieved in following stages:

.

Definition of a template using the TEMPLATE directive. Template is not a true array, just a description of
an abstract index space, so there is no memory allocation for the template. It cannot be passed as a formal
argument to a subroutine, but it can be INHERITed.

2. Definition of an abstract processor array using PROCESSORS directive.

3. Alignment of data arrays with the template using ALIGN directive

. Distribution of the template onto the processor array using DISTRIBUTE directive. All array elements which
are aligned with the elements of the template reside on the same processor. Possible partitioning patterns are:
BLOCK, CYCLIC and *. BLOCK distributes an array dimension in contigous blocks, CYCLIC distributes
in a round-robin fashion, while * specifies that the array dimension should not be distributed. BLOCK is
analogous to :NEWS and * corresponds to :SERIAL in CM Fortran.

5. Mapping of the abstract processor array onto the hardware. This final stage is implementation dependent and
is done by the run-time system transparently to the programmer.

The fundamental advantage of this process is that code design is centered around the topology of the physical problem,
while the mapping from the problem topology to the communication hardware topology is done by the system in a
(presumably) optimized fashion for that hardware.



Theexaminationof van Leer and Prather algorithms shows that computation on a grid point requires knowledge

of nearest neighbors only. This suggests that BLOCK type distribution is the best choice. Density and velocity
fields are eonformal although they are defined on physically staggered grids. They are aligned to the same template

Density, which guarantees locality of memory references. Important arrays which define pressure levels and pressure
increments between successive _ levels are one-dimensional. Arrays which determine surface pressure on grid centers

and edges are two-dimensional. The most effective strategy to maintain memory locality with these non-comforming

arrays is data replication. Using the SPREAD intrinsic, lower dimensional arrays are replicated into 3D arrays.
The simplest replication strategy is to dimension all replicated arrays as the density and velocity arrays and to align
them to the same Density template. If memory is at premium, the replicated arrays should be dimensioned as the

pr.ocesor array and then aligned to the Density template in a strided fashion.
If an array is declared asDYNAMIC, it can be redistributed and realigned during the course of the computation,

using executable directives REDISTRIBUTE and REALIGN. Arrays are implicitly realigned and redistributed
across subroutine boundaries, if the distribution of the actual and dummy arguments is different. It is frequently

necessary to redistribute data in order to maximize either memory access locality or parallelism during different
phases of computation. In the advection code, bottom pressure layer and the interface layer between troposphere and

stratosphere require special treatment. During vertical advection step, it is necessary to separate computations on the
bottom layer from the rest, while horizontal advection treats all-pressure levels uniformly. Because of this, bottom a

level is passed to the Prather subroutine as a 2D array. The dummy 2D argument is spread across the whole machine
and the actual argument is a slice of the 3D array. The implicit mapping across a subroutine boundary allows one to
choose the best data layout to implement a computational module, while the interface between modules is handled

transparently by the run-time system.

_. Load Balancing

Parallel efficiency is diminished if the computational load is not balanced, since the idle processors are underutilized

resource. The major source of load imbalance in the advection code is sub-cycling in the polar regions, which happens

only during the advection step in the longitudinal direction. A trivial solution to this problem is to decrease the value
of time step interval At uniformly over the globe, so that the CFL condition is satisfied everywhere with the given
At. The computation is load-balanced at the expense of doing physically unnecessary computations in the equatorial

regions. Instead, the GSFC code implements a two-time-scale strategy: a small time step At, is used for polar regions,
while a bigger At2 = 5- At1 is used in the equatorial region ([A[ < 70°). In principle, one could use a multitude of
time scales for different latitude slabs. Since the computational complexity of advection step depends on the location

of a grid point, any load-balanced decomposition strategy must take this into account.
The simplest decomposition strategy would distribute only X and Z dimensions of the three-dimensional arrays.

This is accomplished with following directives:

INTEGER, PARAMETER:: Ix=88, ly=144, Iz=19

REAL, DIMENSION(Ix,ly,lz):: mixr

INTEGER, PARAMETER:: nx=4, nz=4

!HPF$ PROCESSORS proc(nx,nz)

!HPF$ TEMPLATE, DIMENSION(Ix,lz):: temp2D

!HPF$ ALIGN mixr(:,*,:) WITH temp2D(:,:)

!HPF$ DISTRIBUTE temp2D ONTO proc

!grid points along fat, lon, z

!mixing ratio array

!number of processors along
!lat and z directions

!processor array

!2D template

!collapse 3D mixing ratio array

!onto 2D template

!distribute template and aligned

!arrays onto processor array

Computation is trivially load balanced, since the computational complexity varies along the locally cached Y direction.

One drawback of this approach is its lack of scalability due to excessive communication costs. Scaling properties can

be described by a simple model:

Iv

T2D = T¢ornm + Tcomp = [2L_rco,n,, 4- r,] 4- rVL'_" (12)
=

In this equation, T2D denotes time required to perform a single van Leer step on a single pressure level using the

two-dimensional decomposition. Grid size in x and y direction is Lz and Ly respectively. Total number of grid points

on a single level is N_ = L_. Ly. Architecture specific parameters are defined as follows: P is the number of processors

assigned to a single pressure level, r_o,_m is the average time to transmit a floating point number across the network,
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r_ is the start-up time for the communication channel, and rvr is the CPU time required for van Leer update of a

single grid point. If both grid size and number of processors are increased in such a way that computational load per
arl/2

processor is kept fixed, i.e., Ng/P = const, communication time diverges as T¢omm cx Lu oc ,,g .

Three-dimensional decompositions have better scaling properties. The following set of directives will distribute all

three dimensions across a processor array:

INTEGER, PARAMETER:: ix=88, iy=144, iz=19

REAL, DIMENSION(Ix,ly,lz):: mixr

INTEGER, PARAMETER:: nx=4, ny=4, nz=2

!HPF$ PROCESSORS proc(nx,ny,nz)

!HPF$ TEMPLATE, DIHENSION(lx,ly,lz)::

!HPF$ ALIGN mixr WITH temp3D

!HPF$ DISTRIBUTE temp3D ONTO proc

!number of processors along

!lat, lon and z directions

!processor array

temp3D !3D template

!distribute template and aligned

!arrays onto processor array

A simple model of computational cost per van Leer step is given by:

T3D : noram + no,np --- [2 Tcorara + To + 7VL 1" (13)
tP

_v1/2
Since Lx oc L_ oc ,,g , total computation time is a homogeneous function of the scaling argument N_/P. Therefore,

by increasing the machine size we can solve bigger problems in the same amount of time.

We augmented the three-dimensional decomposition with an explicit load-balancing strategy to handle sub-cycling,

as shown in the following code segment:

! del_mixr = temporary array to store changes due to X advection

i u = X component of transport winds

! mixr_hlat = temporary array for hi6h-latitude sections of mixr

! mixr_mlat = temporary array for mid-latitude section of mixr

! u_hlat = temporary array for high-latitude sections of u

! u_mlat = temporary array for mid-latitude sections of u

! del_mixr_hlat = temporary array for high-latitude sections of del_mixr

! del_mixr_mlat = temporary array for mid-latitude section of del_mixr

! trigs_hlat, trigs_mlat = tables with trigonometric factors (precomputed)

! pres_mlat, press_hlat = pressure arrays for mixing ratio to mass conversion

! ndt=5 subcycling ratio

} isltl, Islt2 = boundary grid indices for South polar region

! lhltl, lhlt2 = boundary grid indices for North polar region

! imltl, Imlt2 = boundary grid indices for mid-latitude region

! hlat_width = (Islt2-1sltl+1) + (lhlt2-1hltl+l) integer parameter

! mlat_width = (lmlt2-1mltl+l) integer parameter

real,

real,

real,

real,

!HPF$

_HPF$

_HPF$

!HPF$

!HPF$

_HPF$

!HPF$

!HPF$

dimension(nlon,hlat_width,nlev):: mixr_hlat,u_hlat,trigs_hlat,del_mixr_hlat

dimension(nlon,hlat_width,nlev):: pres_u_hlat,inv_pres_hlat

dimension(nlon,mlat_width,nlev):: mixr_mlat,u_mlat,trigs_mlat,del_mixr_mlat

dimension(nlon,mlat_width,nlev):: pres_u_mlat,inv_pres_mlat

DISTRIBUTE mixr_hlat(block,block,block) ONTO proc

DISTRIBUTE mixr_mlat(block,block,block) ONTO proc

ALIGN

ALIGN

ALIGN

ALIGN

ALIGN

ALIGN

u_hlat WITH mixr_hlat

trigs_hint WITH mixr_hlat

pres_hlat WITH mixr_hlat

u_mlat WITH mixr_mlat

trigs_mlat WITH mixr_mlat

pres_mlat WITH mixr_mlat

! gather high and mid latitudes into temporary arrays
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!

mixr_hlat(:,Isltl:Islt2,:)=mixr(:,islt1:Islst2:)

mixr_hlat(:,Islt2+l:hlat_width,:)=mixr(:,lhltI:lhlt2,:)

mixr_mlat=f3(:,imlt1:imlt2,:)

u_hlat(:,Islt1:islst2,:)=u(:,islt1:islst2:)

u_hlat(:,boundi+i:hlat_width,:)=u(:,lhlti:lhlt2,:)

u_mlat=u(:,Imlt1:Imlt2,:)

! van Leer step on high and mid latitude temporaries
!
. j

CALL XadvHlat(del_mixr_hlat,u_hlat,mixr_hlat, trigs_hlat, inv_pres_hlat, pres_u_hlat, ndt)

CALL XadvMlat(del_mixr_mlat,u_mlat,mixr_mlat, trigs_mlat, inv_pres_mlat, pres_u_mlat)

! scatter temporaries into original arrays

del_mixr(:,Isltl:Islst2:)= del_mixr_hlat(:,1:boundl:)

del_mixr(:,lhltl:lhlt2,:)= del_mixr_hlat(:,boundi+l:hlat_width,:)

del_mixr(:,Imltl:Imlt2,:)= del_mixr_mlat

The X-advection step is split into a mid-latitude advection and high-latitude advection. High-latitude advection

performs ndt = At2/Atl = 5 van Leer steps on the near-polar-cap portions of the mixing ratio array, for each mid-
latitude advection step on the near-equator portion of the array. To achieve maximum parallelism and load balance,
polar regions of an array, which reside on disjoint subsets of processor node array, are gathered into a temporary

array which is distributed across all nodes, before the high-latitude step. Mixing ratio changes at high latitudes are
written into a conformal temporary array. After the high latitude step, this temporary array is scattered back into
the original array which stores mixing ratio changes for the whole globe. The same gather/scatter is done with the

mid-latitude array portions, before the Y and Z advection steps are done on the original arrays. Load balancing is
achieved at a price of extra communication overhead required for the two gather/scatter phases.

The performance model of Equation 13 must be augmented with the communication overhead of the gather/scatter

operations. This is in general quite complicated, since the gather/scatter overhead rGs(Ng,P, Qp ) depends on

the problem size Ng, machine size P and the inteconnect network topology f2p. For simplicity, we will treat the
gather/scatter operation as a broadcast along Y direction, which may be considered as an upper bound for the real
overhead. For hypercube topology with cut-through routing and sufficient bandwidth to eliminate link contention,

time required for a gather/scatter operation is:

rGs(N#, P, lip) = a rcomm "if- + r, + fl" log(P) (14)

where fl is a platform dependant parameter. Factor a(ly/Ly) depends on the ratio of numbers of mid-latitudes and

all latitudes, ly/Lu. Total time for a van Leer X advection step of a load-balanced three-dimensional decomposition
is:

TaLDB = TaD 4- 2raS = 3r, + +2-p-y_r_omm 7"VL-t- 2a -_y rcomm _ nt- fl' logP
(15)

Because of the logarithmic term, load-balanced three-dimensional decomposition is weakly non-scalable as well. How-
ever, if the load per processor is kept fixed, i.e. Ly o¢ pll2, logarithmic divergence in T LB is weaker than the linear

one in T2D, which means that for sufficiently large machine, three-dimensional decomposition is superior. Situation is
more complicated for architectures with lower connectivity. For example, it is impossible to eliminate link contention
on a mesh based interconnect topology. In this case, leading terms in the gather/scatter overhead are given by:

Iv
rcs( Na,P,ap) = +rs +,8. P - TP1/2 (16)

assuming a square processor array.
Scaling analysis is valuable for predicting performance in asymptotic regimes, but may be misleading in practical

applications, where problem size and machine size are not freely adjustable parameters. Maximum and minimum

problem size are determined by the limitations of the physical model represented by partial differential equations.
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Frequently, this implies that the variations in problem size are not big enough for a scaling analysis to be relevant.

Instead, given a limited range of problem and machine sizes, one has to pick a data distribution strategy which will

minimize total computation time. With explicit message-passing, changing data layouts requires that the communica-

tion portion of the code be redesigned completely. Because of that, one has to decide on the optimal layout carefully a

priori, which requires building detailed computational cost models and knowledge of hardware and software parame-

ters. Even if one adheres to standards like MPI, this restricts practical code portability (including nominally portable

libraries, unless they support switching between different layouts), since a particular layout may have excellent per-

formance on some platforms and poor performance on others. One of the advantages of programming in HPF is that

one can easily implement and experiment with different data layouts by simply changing template distributions and

alignment directives. This makes a posteriori code optimization for a target architecture and problem size simple and

inexpensive. Portability is enhanced by programmer's reliance on the run-time library optimizations to achieve good

performance across a wide range of platforms.

F. Evaluation of Language Features

The most important operations in van Leer and Prather algorithms can be loosely classified as stencil computations.

Due to time -splitting, each advection step requires a simple stencil which includes nearest neighbors along % given

direction. Stencil computations, combined with periodic boundary conditions along X direction, are easily expressed

using the Fortran 90 CSHIFT intinsic:

SUBROUTINE XadvMIat(D,DTOVDXL,UI,FI,PSIINV,PSU,UPSTREAM)

REAL DTOVDXL(ILMM,LI:L2,IKMM), BOT(ILMH, LI:L2, IKMM),

! DNEW(ILMM, LI:L2, IKMM),D(ILMM, LI:L2, IKMM),

! DELTA(ILMM, LI:L2, IKMM), TOP(ILMM, Li:L2, IKMM),

! FLUX(ILMM, LI:L2, IKMM)

REAL LPSU(ILMH, LI:L2,IKMM), LFLUX(ILMH,LI:L2,1KMM),

! LUI(ILMM, Li:L2,1KMM), RD(ILMM, Li:L2, IKMM),

! LD(ILMM, LI:L2, IKMM), LDELTA(ILMM, LI:L2, IKMM)

rd = CSHIFT(d, DIN=i, SHIFT=-I)

Id = CSHIFT(d, DIN=i, SHIFT=I)

lu = CSHIFT(u, DIN=i, SHIFT=l)

ipsu = CSHIFT(psu, DIN=i, SHIFT=I)

IF (.HOT.upstream) THEN

top = (d-rd) * (id-d)

bot = Id - rd

WHERE((top.GT.O.).AIID.(bot.HE.0.))

delta = 2 * top / bot

ELSEWHERE

delta = 0.

END WHERE

ELSE

delta = O.

END IF

Idelta = CSHIFT(delta, DIM=i, SHIFT=I)

WHERE(Iu. GE.0.)

flux = d + (.5 * (i - lu * alpha) * delta)

ELSEWHERE

flux = id - (.5 * (I + lu * alpha) * Idelta)

END WHERE
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iflux = flux

flux = CSHIFT(flux, DIM=I, SHIFT=-1)

delta = -alpha*inv_press*(lu*Iflux*ipsu - u*flux*psu)

RETURN

END

With free boundary conditions along Y direction we may use either EOSHIFT (end-off) intrinsic or even the array

sub-section notation, as shown below:

• WHERE(VFLD(: ,I:IJMM, :).GE.O.O)

FLUX(:,I:IJNN,:) = D(:,O:IJMN-I,:) + (.5 *

$ (I.- VFLD(:,I:IJMM,:) * DTOVDXJ) *

$ DELTA(: ,0:IJNM-1, :))
ELSEWHERE

FLUX(:,I:IJMM,:) = D(:,I:IJMM,:)

$ - (.5 * (1.+ VFLD(:,I:IJMN,:)*DTOVDXJ) *

$ DELTA(:, I:IJk_[,:))
END WHERE

Calculationof fluxesdiffersfor points with positiveand negativevelocities,due to the upstream characterof the

algorithm.This isexpressed using the Fortran90 masked array assignments (WHERE statements).

Polar caps are treatedusing the well-mixed approximation to avoid singularitiesassociatedwith sphericalmetrics.

This approximation requirescomputing net fluxintothe polarcaps,which isexpressed usingthe SUM intrinsic.The

resultant 1D array is then SPREAD back into the 3D density array.

! South pole
SUMSP = SUM(FLUX( :,I,:),DIM=l)

! North pole
SUMNP = SUM(FLUX(: ,IJMM, :),DIM=I)

! Polar caps are top and bottom strips of the 3D grid
forall(ik=l:ikmm) DNEW(: ,O,ik) = -POLCON*SUMSP(ik)

forall(ik=l :ikmm) DNEW(: ,IJMM,ik) = POLCON*SUNNP(ik)

SPREAD is one of the Fortran 90 array construction functions, which also include functionality to MERGE and

RESHAPE arrays. SUM is representative of the complementary class of reduction operations. Reductions map an

array argument into an array of lower dimensionality by performing an operation (such as sum, product and others)
on subsets of array elements which are defined by the arguments DIM and MASK. DIM specifies the dimension of

the array along which the reduction should be performed and MASK makes the operation conditional upon a logical

array argument.
Constructors and reductions involve global redistributions of data. Efficient implementation of these global opera-

tions is essential for good performance since they involve collective communication routines. This fact is recognized

in HPF design which provides a number of most common and valuable global operations as intrinsic routines. Most
of them are inherited from Fortran 90, but the HPF intrinsic library provides additional routines. Among the most

important HPF intrinsics are:

1. array reduction functions

2. Array combining scatter functions

3. Array prefix and suffix functions (scans)

4. Array sorting functions

5. Bit manipulation functions

6. Vector and Matrix multiplication functions

7. Elemental intrinsic functions

8. Array location fubctions

9. Mapping inquiry subroutines
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From the long list of Fortran 90 and HPF intrinsic routines, advection code relics mostly on constructors, reductions,

scans, elemental intrinsic functions and array location functions.

Prather step consists of two phases: deconstruction of volume boxes and their subsequent reconstruction. Decon-

struction phase can be made purely local by alignment of density and velocity arrays. In the reconstruction phase,

moments trans_rred _om the upstream box must be communicated to the downstream box. In the code segment

below, we show how this can be accomplished in HPF using the array section notation combined with a WHERE

construct conditional upon the sign of the velocity.

C RECONSTRUCT TROPOSPHERIC, INTERFACE AND STRATOSPHERE BOXES

WHERE(SGARRAY(:,:,I:KTOPR1).LT.O.)

' EPS(:,:,I:KTOPM1) = F(:,:,I:KTOPM1)/(F(:,:,I:KTOPM1)+ CON(:,:,2:KTOP))

EPSI(:,:,I:KTOPMI) = I.-EPS(:,:,I:KTOPM1)

TEMP(:,:,I:KTOPHI)=EPS(:,:,I:KTOPM1)*C(:,:,2:KTOP)-

1 EPSI(:,:,I:KTOPN1)*FO(:,:,I:KTOPH1)

C(:,:,2:KTOP) = C(:,:,2:KTOP) + FO(:,:,I:KTOPM1)

CZZ(:,:,2:KTOP)=EPS(:,:,I:KTOPM1)*EPS(:,:,I:KTOPN1)*

1 FZZ(:,:,I:KTOPM1)+EPSI(:,:,I:KTOPM1)* EPSI(:,:,I:KTOPH1)*

1 CZZ(:,:,2:KTOP)+5.0*(EPS(:,:,I:ETOPM1)*EPSI(:,:,I:KTOPMI)

1 *(CZ(:,:,2:KTOP)-FZ(:,:,I:KTOPM1))-(EPSI(:,:,I:KTOPMI)-

1 EPS(:,:,I:KTOPN1))*TEMP(:,:,I:KTOPMI))

CZ(:,:,2:KTOP) = EPS(:,:,I:KTOPM1)*FZ(:,:,I:KTOPM1)+

1 EPSI(:,:,I:KTOPN1)*CZ(:,:,2:KTOP)+ 3.0*TEMP(:,:,I:KTOPM1)

ELSEWHERE

EPS(:,:,I:KTOPMI) = F(:,:,I:KTOPMI) / (F(:,:,I:KTOPMI)

I +CON(:,:,I:KTOPMI))

EPSI(:,:,I:KTOPM1) = 1. - EPS(:,:,I:KTOPM1)

TEMP(:,:,I:KTOPM1) = -EPS(:,:,I:KTOPM1)*C(:,:,I:KTOPM1) +

I EPSI(:,:,I:KTOPN1)*FO(:,:,I:KTOPM1)

C(:,:,I:KTOPM1) = C(:,:,I:KTOPMI) + FO(:,:,I:KTOPM1)

C(:,:,I:KTOPM1) = C(:,:,I:KTOPM1) + FO(:,:,I:KTOPM1)

CZZ(:,:,I:KTOPN1) = EPS(:,:,I:KTOPM1)*EPS(:,:,I:KTOPM1)*

1 FZZ(:,:,I:KTOPM1)+EPSI(:,:,I:KTOPM1)*EPSI(:,:,I:KTOPM1)*

1 CZZ(:,:,I:KTOPM1) + 5.* (EPS(:,:,I:KTOPM1)*

1 EPSI(:,:,I:KTOPM1)*(-CZ(:,:,I:KTOPN1)+FZ(:,:,I:KTOPM1))+

1 (EPSI(:,:,I:KTOPNI)-EPS(:p:,I:KTOPM1))*TEMP(:,:,I:KTOPMI))

CZ(:,:,I:KTOPM1) = EPS(:,:,I:KTOPMI)*FZ(:,:,I:KTflPM1)+

1 EPSI(:,:,I:KTOPMI)*CZ(:,:,I:KTOPM1)+3.*TEMP(:,:,I:KTOPM1)

END WHERE

The bottom pressure layer requires special treatment since there cannot be flow across the Earth surface. In

principle, this could be handled by the WHERE construct, but it leads to load imbalances. Load imbalance is

eliminated by separating 2D arrays which correspond to the bottom layer _om the 3D arrays which describe the

rest of troposphere and stratosphere. For maximum parMlelmm, both 2D and 3D arrays are spread across the whole

machine before the Prather step is performed. A_er the completion of the Prather step, arrays are merged into a

single 3D array which is used for van Leer advection. Load bMance is achieved by incurring the merge communication
overhead.

Stencil computations are naturally expressed using array syntax because they execute mappings between conformal

array sections. There are many occasions where parallelism must be expre_ed via more complex mappings of array

indices. In this case, parallelism is expressed explicitly using the FORALL statement. A very simple example is the

code segment below which initializes Rausch-Williamson winds to test the advection algorithm:

D2 = (360. I _)

FO = -D2/2.

DTR = PI / 180.

FORALL(IL=I:N) DL(IL) = (IL-I)*D2 * DTR

FORALL(IL=I:N) DL2(IL) = (FO + (IL-I)*D2) * DTR

UI = 2. * PI * A / (256. * 900.)

FORALL(IJ=O:JGMAX, IL=I:N)

$ U(IL,IJ,:) = Ui*(COS(B)*COSLAT(IJ)+SIN(B)*SIN(DG(IJ))*COS(DL2(IL)))
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FORALL(IL=I:N)

$ V(IL,:,:) = -UI * SIN(B) * SIN(DL(IL))

Multiple FORALL statements can be combined into a FORALL construct. The execution of the statement can be
made conditional upon a scalar logical expression as an extension to the WHERE statement and one may call user-
defined PURE functions to emulate Fortran 90 elemental functions. Programmer can also use the INDEPENDENT

directive to assert that a code segment does not produce dependencies which would prevent parallelization. It may

be used by the compiler to perform additional optimizations.
FORALL is a versatile, convenient and powerful construct which can be used to accomplish many tasks, including

array construction, indirection, scatter and scans. However, we encountered serious inefficiences and problems with its
implementation on present compilers. Particularly problematic were our attempts to implement scans by combining
FORALL statements with reduction intrinsics. Because of this, we consistently tried to avoid FORALL in favor of

combinations of array expressions or array intrinsics whenever possible.
Atmospheric science applications are generally heterogeneous in their treatment of horizontal and vertical direc-

tions. For example, general circulation models (GCM) are split into two components: dynamics, which integrates
fundamental partial differential equations quite similar to the ones considered here, and physical parametrization,

which characterizes sub-grid scale processes as functionals of grid variables. The physical parametrization algorithms
usually couple grid points along the vertical direction in a global fashion. They can be frequently expressed i'n terms

of simple reduction operations and scans. Given any commutative and associative operation x and an array A, scan
is defined as a collection of results: (A(1), A(1) x A(2), A(1) x A(2) x A(3),..., A(1) x A(2). • • x A(N)), i.e. reduction
with saved intermediate results. Scans have a serial flavor but they can be very efficiently implemented in parallel,

particularly when there is hardware support like on CM-5.
A simple example of a scan is the computation of pressure. Where available, we compute the pressure by calling

directly the intrinsic function. If the library function is not available, simple scan may be expressed via a FORALL
statement with a simple reduction function,

FORALL(K=2:KTOP) FI(:,:,K-I) = SUH(FI(:,:,K-I:KTOP),dim=3)

Segmented scans may be expressed using a segment MASK argument in the reduction function:

FORALL(K=2:KTOP) FI(:,:,K-1) = SUN(FI(:,:,K-I:KTOP),dim=3)

The amount of communication along the vertical direction in most atmospheric science codes may warrant an

approach where the vertical direction is not distributed if the machine is small enough relative to the grid size. On

platforms like CM-5 reductions and scans may take advantage of the specialized communication hardware, but the
number of pressure layers is usually too small to amortize the latency costs, and it seems to be always better to
serialize the vertical direction. Again, the decision to distribute vertical dimension can be postponed until after the

trial runs are performed, since it can be implemented by simply changing the processor array directive from

!HPF$ PROCESSORS proc(nx,ny,nz)

to

!BPF$ PROCESSORS proc(nx,ny,;t)

Finally, we would like to emphasize how much is code clarity and compactness enhanced by the expressive capabilities
of Fortran 90 array notation. For example, triplet notation semantics allowed us to represent gather/scatter operations

by a few lines of HPF code. Each line of the HPF code which just copies one array section into another, must be
implemented as a sizable block of message-passing code, consisting of a control block, index arithmetic for send and
receive buffers, manipulation of temporary buffers and at least one SEND/RECEIVE pair. Message passing codes

are usually much longer than their sequential counterparts, unlike HPF codes which are frequently shorter.

In fairness to message-passing approach, HPF codes are not nearly as memory efficient. Reliance on array syntax
sometimes requires that new temporary arrays be used or that scalar temporary variables be turned into arrays. This
happens whenever the WHERE construct replaces sequential DO loops. Another advantage of the message passing

approach is that it allows us to implement arbitrary data decompositions, so we could in principle dispose of the

gather/scatter step altogether. One possibility we considered is to distribute arrays into rectangular boxes of different
sizes, so that the product of the number of grid points per box times the computational complexity per grid point
is fixed. This decomposition is load balanced and there is no global communication overhead due to gather/scatter.
However, the bookkeeping required to manage communication between boxes of varying shape and size for varying
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numberof nodes and grid sizes is overwhelming. This is the reason why in our message-passing implementation we
opted to use a small enough At to satisfy the CFL condition for the whole globe.

This discussion touches upon one of the defficiencies of the current version of HPF. It has semantic support for

regular data layouts, which is sufficient for a large class of applications, but it lacks support for irregular data structures
or non-uniform data layouts. For transport algorithm, support for static non-uniform partitioner would trivially solve

the load-balancing problem. In other applications, like those which involve adaptive grids, dynamic load balancing
and re-partitioning is essential. In either case, language functionality would be greatly enhanced by a high-level

interface to a user-specified partitioner or repartitioner. A number of research efforts is directed towards providing
such an interface.

G. Performance

The purpose of our research was to examine problems which arise in the parallel implementation of transport

algorithms and to evaluate how successfully can they be solved using the two major parallel computing paradigms.
We were particularly interested in examining the features of the new data parallel language, High Performance Fortran,
and how effectively can they be mapped onto the transport algorithms. Because of that, we were not interested in
obtaining detailed performance measures for different problem sizes and machines. Furthermore, HPF compilers are

far from mature and any attempt to provide performance measures is bound to be short-lived.

The table below shows typical performance data for the CM Fortran implementation of the van Leer algorithm on
a 144 x 88 x 14 model grid with load balancing. One thing to note is the very low FLOP rate for Y advection because

of the bottleneck introduced by the well-mixed polar cap approximation.
Number of Processors 32 256
X Advection Peak GFLOPS 1.12 6.78

Y Advection Peak GFLOPS 0.63 4.38

X Advection Average GFLOPS 0.51 2.37

Y Advection Average GFLOPS 0.053 0.30

Production systems may require multiple data layouts for optimum performance, which depend on the machine
size and problem size. In the advection codes we examined, there are regimes where either of the three decompo-

sition strategies dominates, so it is essential to have the capability to redistribute data with minimum effort. By
encapsulating data layout into a set of high-level primitives, HPF enables effective a posteriori optimization.

H. Summary and Conclusions

We implemented prototype parallel atmospheric transport codes using a high-level data parallel language (High
Performance Fortran) as well as a low-level message-passing approach (Intel native communication library). The
parallel systems evolved from sequential Fortran 77 codes developed at NASA Goddard Space Flight Center. Eule-
rian transport algorithms such as van Leer and Prather are characterized mostly by local computations which can

be efficiently expressed in data parallel paradigm. We showed how the language features of HPF can be used to

compactly and effectively express computations in the advection algorithms. We showed that implementation in High
Performance Fortran offers important advantages in comparison with the low-level message-passing approach. One
of the most important advantages is the higher level of abstraction of the parallel system which is presented to the
application programmer. As a result, data layout management tasks are separated from the rest of the application.

Such an implementation requires less coding, offers enhanced portability and a practical strategy of inexpensive a
posteriori experimentation with different data layouts for optimization. The limitation of this approach is that one

can currently implement only regular layouts. Because of this restriction one is frequently forced to incur overheads
for data redistributions required for load-balancing. This problem should be solved in the near future by integration
of general-purpose, flexible partitioners into the language. Gridpoint methods in atmospheric and earth sciences are

generally characterized by regular, static data structures and static computational flow-graphs, which makes them
suitable candidates for efficient implementation in High Performance Fortran and other data parallel languages. This

implies that grid based general circulation models are also appropriate for parallelization using HPF. Adaptive mesh
refining techniques will be easy to implement once user-specified partitioners become incorporated into the language.

Even semi-Lagrangian methods, which result in irregular and dynamic communication patterns can be efficiently

implemented in HPF on equal area grids like icosahedral. The uniform nature of icosahedral grid is an important
advantage over the standard latitude-longitude grid. By tuning time step At on icosahedral grid, one can guarantee
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that communicationwill benearestneighboronly,whichis impossiblewith latitude-longitudegrid. In thiscase,a
globalreductionis necessaryeverytimestepto ensurethat At is properly sized, which makes HPF global intrinsics
particularly valuable. Semi-Lagrangian algorithm is an important case where considerations of parallel efficiency influ-

ence the design of the primary data structures. Usually, the data structures of the original sequential implementation
determine the parallel implementation. In this sense, a large number of parallel codes evolve "adiabatically" from
sequential codes. However, sometimes there are important benefits in designing an algorithm from scratch with its

parallel implementation in mind.
In a production environment, advection or transport code constitutes a module which must be integrated into the

complete system, which may be spread across a heterogeneous meta-computer. Neither the data-parallel languages

nqr the low-level approach offer a seamless and convenient system integration environment. We are particularly
interested in the system integration requirement of the complete data asimilation system. There seem to be two

complementary approaches to integration across architectures and even paradigms. Fortran M, for example, provides
tools for integration of data and task parallelism at the single language level. An important feature of Fortran M is

capability to allocate resources among tasks dynamically. On the other end of the spectrum is exogenous integration
which separates module integration paradigm (like AVS) from the module implementation paradigm (like HPF).
Complete assimilation system can be conceptualized as a static data-flow diagram which can be conveniently mapped
onto an AVS network. We are currently investigating the possibility of using AVS framework for system integration.

This approach turned out to be very successful in other meta-eomputer applications, particularly in those cases where
links between modules are static. One of the limitations of the present AVS design is that exchange of data between

modules is done through the kernel process and cannot use the full communication bandwidth of a parallel machine.
This is not very restrictive in our case, because of the inherently sequential structure of the assimilation loop data-flow

graph. We have implemented the van Leer/ Prather advection routines as AVS modules and linked them with AVS

supported visualization modules.

V. PARALLELIZATION OF NASA/GODDARD SHALLOW WATER SEMI-LAGRANGIAN CODE

The purpose of this component of the 4DDA project is to investigate suitable domain decompositions that lead to
efficient parallelizations of the interpolation techniques used in the Semi-Lagrangian advection scheme. In this report

we present the results of our investigation using the lasagna decomposition of the input domain of the bilinear and
bicubic interpolations used in NASA's 2-D Shallow Water Model.

Our approach to the usage of the lasagna decomposition reduces the amount of communication needed for either
the bilinear or bicubic interpolations. The criteria for goodness of the algorithm is based on the ratio of the useful
work done to the amount of communication required.

A. Introduction

Weather forecasts are essential for the planning of many activities. They need to be accurate and available in time.

The basis of weather forecasting are Numerical Weather Prediction (NWP) models which assimilate data and predict

future conditions of atmosphere. Given the requirement that forecasts be available in real-time, the numerical models
must be efficient. There is also considerable interest in building quality data-sets or model predictions of weather

conditions for research purposes and as case studies. These involve processing of voluminous data using the numerical

models in an efficient manner.
One chronic problem with NWP models is that the longest time step that can be chosen is decided by stability

rather than accuracy. This is alleviated to a considerable degree in the Semi-Lagrangian Transport Model using a
semi-implicit time differencing scheme [8,9]. This was demonstrated for a limited area shallow water model (one layer,

homogeneous fluid). An excellent review of Semi-Lagrangian integration schemes for atmospheric models is treated

by [10].
Later work addressed the deficiencies associated with polar singularity in the latitude-longitude co-ordinate system

[7]. NASA implemented a modified model based on this paper
Another notable issue is that for accuracy to be improved, among other things higher resolutions are required. This

calls for efficient implementations on powerful machines. Effort has been underway to implement these models on
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parallelcomputerst
In order to establish the most suitable paradigm, certain modules of NASA's serial implementation were identified as

test-cases. Initial studies at Syracuse University and NASA have indicated that tile interpolation techniques deployed

occupied a total running time of 25% of running time in the serial code. It was also observed that the usage of the
construct "forall" did not have a good speed-up in the data parallel prototype on the CM-5. This can be attributed
to the irregular, non-local pattern of data accesses. In addition the decomposition was carried out in the North-South
axis as shown in Fig. 1; as one expects winds to be mostly in the East-West direction. This lead to a very poor

utilization of the nodes when there was a small grid size and one of the grid axes declared as serial or local to a
node. In such a case the data is distributed among only a few nodes along the news or parallel axis leaving remaining

processors with no work [5] The default news:news (square or ravioli) decomposition showed better results. This is
because the run time library is able to ensure a better utilzation of nodes with the default decomposition. But this

decompostion does not take advantage the fact that the winds are of a East-West nature.

Hence, the message passing model was proposed as an alternate parallelization technique as it offers a greater
flexibility in choice of domain decomposition. One does not need to depend on the vagaries of run-time libraries or
systems to decide the utilization of nodes. Scalable decompositions may be developed. Additionally, the decomposition

can be adapted to ensure that the pole regions are treated differently than regions near the equator. This is because,
at the poles the winds move around the pole (entire latitude).. This is another disadvantage using data parallel

techniques which permit only simple decompositions. Hence, nearest neighbor communication is not possible at the
pole for the default square decomposition on CM-5 when using a latitude-longitude grid.

A lasagna decomposition along the N-S axis was adopted as the first test case as seen in Fig. 2. This was postulated

to have mostly nearest neighbor communication in the N-S direction. The polar region problem is avoided as the
lasagna strips are in E-W direction. The algorithm uses a message-passing version of the data-parallel construct

"cshift". The maximum number of"cshifts" is determined at run-time at every time -step for each component. The
necessary data from the circulated wind "strips" is collected and a local interpolation is performed at every time step.
Two strategies and their merits are discussed in the next section.

B. Metrics

We propose some measurements for assessing the goodness of the algorithm as well as giving direction to future
work :

• Overall running time

* Ratio of calculation to communication.

• The maximum displacement in terms of nodal distance in the N-S direction.

• Speed-up of interpolation

* Accuracy of calculations

The first criterion shows how well the algorithm performs with respect to the serial code as the problem size

grows. The numerical value is of not much interest. But, a very low figure would indicate that the algorithm was
ill-conceived. The second may give a clue as to what could be a suitable ratio of the partition dimensions in more
complex decompositions. It would also verify if the assumption that the winds are mostly E-W is true. The third

criterion indicates how well the algorithm will scale when a global 3-D Semi-lagrangian model is used. As far as the
fourth criterion is concerned, speedups will be obtained by comparing the performance of the code on a 32 node CM-5
with the performance on a single node on the CM-5. The last criterion is important as it indicates the presence of

errors other than roundoff. This done by finding out if the difference between the interpolated values obtained from
both the serial and parallel implementations are homogenous for a given resolution.

XWeather Modelling project undertaken at NASA Goddard Laboratory, Maryland
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C. Design

The problem of parallelizing the bilinear and bicubic interpolation is first considered by using a simple approach.

In this lasagna decomposition each node receives an input partition of the latitude, longitude grid and each of the two
wind components [Fig 2 I. Each node then computes a set of points (ordered pairs) (iijj) from the latitude, longitude

grid, based on which an interpolation is carried out. In case of the bilinear interpolation, associated with the set
of points (iijj) there exist four sets of points (iijj+2), (iijj+3), (ii+l),(jj+2), (ii+ljj+3) which are required for the
interpolation [Fig. 3]. In case of the bicubic interpolation there are sixteen such sets of points [Fig. 4] 2

In the first approach to interpolation, the algorithm is outlined below.

• Do for all (iiaj)

- Find the 4 points (iiaj+2), (iijj+3), (ii+ljj+2), (ii+l,jj+3)

- Obtain the values of the wind component at above points.

* If the value is not available locMly, fetch from the appropriate neighboring node

- Find the interpolation point.

- Compute the value at interpolation point.

• End of do loop

It is obvious that though the above approach is simple, it is impractical to implement because of the huge communi-
cation overhead involved. For, every point that is not available locally, a communication call will have to be generated
to fetch the value at that point. There are at least two approaches which lower the communication overhead. In both

the approaches strips of the wind components are shifted from node to node. The shifting occurs in both the southern
and northern directions. The amount of shifting is determined by the approach discussed in the next section.

D. Pre-Determination of Degree of Circulation

If the assumption that the winds in the North-South direction mostly result in nearest neighbor communicationis
valid, then the following strategy may be used. For any given global indice (ii, j j), we determine the node it belongs to.
The inter-nodal distance is then simply the difference between the owner node and user node. But, this distance has

a direction, i.e. the "owner" node may be reached in the North or South Direction [Fig. 5]. Hence, this is converted
to the inter-nodal distance between the two nodes when going in the North direction. Moreover, if the inter-nodal
distance exceeds half the number of nodes, the shorter path is in the Southern direction. For, either interpolation

there are two extreme points in the North-South direction [Fig. 3,4]. The inter-nodal distance is computed for both

the points separately, for all the indices on a node. The maximum inter-nodal distance in a direction (both North
and South are evaluated) is then found by a global reduction. The two maxima in the North-South direction govern

the circulation.

The algorithm for the pre-determination of degree of circulation is below

• ny = Number of nodes (processors) used

• Let 'myaddr' denote the address of the node executing the code

• Let 'ownp0' denote nodal address where value 'jj(ia)+0' resides

• Let 'ownp3' denote nodal address where value 'jj(ij)+3' resides

• Number of elements in F_,-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

• for j = 1, range

_Hereafter, the discussion will consider only the bilinear interpolation, but the same reasoning holds good for the bicubic

interpolation. Appendix A covers the bicubic interpolation algorithm.
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- fori = 1,imp3
• ownp0= jj(ij) / partition width

• ownp3 = (jj(ij) + 3) / partition width

• Find the inter-nodal distance in northern direction from 'myaddr' to both ownp0 and ownp3

• distp0 = ownp0 - myaddr

• distp3 = ownp3- myaddr

• if (distp0 .It. 0),distp0 = ny + distp0

. if (distp3 .It. 0),distp3 = ny + distp3

• Find the shortest inter-nodal distance for both ownp0, ownp3, and update the local maximum inter-
nodal distances if required

• Find the global max. northern dist. (reduction operation)

• Find the global max. southern dist. (reduction operation)

Expansion of Updation of local maximum inter-nodal distances

• Let distp0 be the inter-nodal distance in northern direction from 'myaddr' to ownp0

• Let distp3 be the inter-nodal distance in northern direction from 'myaddr' to ownp3

• If distp0 .gt. (ny / 2)

- distp0 = ny - distp0

- if (max. southern dist .It. distp0) max. southern dist = distp0

• Else

- if (max. northern dist .It. distp0) max. northern dist = distp0

• If distp3 .gt. (ny / 2)

- distp3 = ny - distp3

- if (max. southern dist .lt. distp3) max. southern dist = distp3

• Else

- if (max. northern dist .lt. distp3) max. northern dist = distp3

E. Reconstruction of the Sets of Polnts Approach

In the second approach we wish to fully reconstruct the four associated sets of points (iidi+2), (ii,jj +3), (i i+ 1),(jj +2),
(ii+ldi+3) in four arrays for every node. Then the four arrays are indexed to obtain the four points required for
interpolation on every node. As a wind component has been partitioned as shown in Fig. 2, there is an upper and
a lower bound on the index jj in the North-South direction that decides which values of a wind component may be

found locally. Thus, at every shift of the wind strips, the four arrays maybe partially reconstructed using the new
bounds obtained with every shift. At the end of the shifting the arrays should be fully reconstructed• However,

there will be points such that the points (iijj) will be local but (xjj+2) or (x_+3) may not be local as seen in
figure 3 3. Thus it will not be possible to reconstruct entirely locally the four associated sets of points for all jj that
that fall within the bounds of the node's partition• If the reconstruction is not done entirely locally, there would be

additional communication overhead to fetch the missing values one at a time, as in the first approach. This hitch
may be rectified by initially creating a 3-element wide strip in the Northern direction by fetching those elements from

the neighboring nodes [Fig. 6]. The creation of the Northern buffer is created before performing any shifts. The

3x maybe ii or ii + 1. This does not matter as in the East-West direction the elements of the wind component are local to a
node.
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original partition and this northern buffer is now termed a segment. These segments are shifted instead of the original

partition. The algorithm for the second approach is outlined as follows, which is executed once for each of the two
wind components.

First level refinement for the algorithm.

• Number of elements in E-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

• • Pre-determine the degree of circulation

• Construct the northern buffer.

Select elements from segment

Fetch segments and select elements from southern direction

Fetch segments and select elements from northern direction

Perform local interpolation

In this approach, one is guaranteed that if the value at jj(ij) is resident on a node, then the value at jj(i,i)+3
is resident 4. Therefore, only the node where jj(ij) is resident, need be considered for determination of the local
maximum inter-nodal distance. This the only deviation from the strategy outlined in the previous subsection.

Algorithm for conslruction of northern buffer

• Copy original wind partition to temporary buffer (depart)

• If partition width less than 3 then

- While northern buffer incomplete

• Send depart to southern node

• Receive partition into northern buffer from northern node

• Copy received partition into depart

- End of while

• Else (partition width is .ge. 3)

- Send original partition to southern node

- Receive new partition in northern buffer from northern node

• Append northern buffer to original wind partition. This will be called segment.

As there is the 3-element northern buffer appended to the original partition.
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Algorithmfor fetching of segments from southern direction

• Current partition bounds = Original partition bounds

• Copy original segment into temporary buffer (depart)

• For number of hops in southern direction

- Send upper & lower bounds of current partition to northern node.

- Receive upper & lower bounds of new partition from southern node.

• - Send 'depart' to northern node.

- Receive new segment from southern node in buffer 'landing'.

- Current partition bounds = new partition bounds

- Copy 'landing' into 'depart'

- Select elements from landing (new segment)

Algorithm for fetching of segments from northern direction

• Current partition bounds = Original partition bounds

* Copy original segment into temporary buffer (depart)

• For number of hops in northern direction

- Send upper & lower bounds of current partition to southern node.

- Receive upper & lower bounds of new partition from northern node.

- Send 'depart' to southern node.

- Receive new segment from northern node in buffer 'landing'.

- Current partition bounds = new partition bounds

- Copy 'landing' into 'depart'

- Select elements from landing (new segment)
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Algorithmfor selection of elements from segment

• Number of elements in E-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

• Input :

- lower _c upper partition bounds [Fig. 6]

- segment (corresponding to partition as in Fig 6)

' - set of points {(iidj)}

- arrays to hold the four sets of points - wl, w2, w3, w4

• For i = 1, imp3

- For j = 1, range

* If (jj(id).le. upper).and. (jj(ij).ge. lower)

• wl = segment(ii(ij),jj(ij) +2)

• w2 = segment(ii(ij), jj(ij) +3)

• w3 = segment(ii(i,j)+l, jj(ij) +2)

• w4 = segment(ii(id)+l, jj(ij) +3)

Algorithm for bilinear interpolation. Fig. 3 explains the terms delx, dely.

• Number of elements in E-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

• for j = 1, range

- for i = 1, imp3

. value at interpolated point = (1.0- delx(ij)) * ((1.0- dely(id)) * wl(ij) + dely(id) * w2(id)) + delx(ij)

* ((1.0 - dely(ij)) * w3(ij) + dely(ij) * w4(i_i))

The drawback with this approach is that the communication overhead for creating the northern buffer increases

when the width of an individual strip is smaller than the overlap region [Fig. 7].

F. Reconstruction of Segment Approach

The third approach recognizes the fact that given the set of computed points (ii,jj) on each node, the node only
needs to see a segment of the entire wind component to perform a local interpolation; there is no necessity for recon-

structing the associated four sets of points. This segment is not the same as in the second approach, in that its size
is not a static quantity. The size of the segment depends on how far back one needs to go along the fluid trajectory
to perform an interpolation, and hence is a dynamic quantity. Thus, no extra communication is needed to establish

a northern buffer. Additionally, only the original partitions of the wind component need be shifted to create the

segment. The circulated wind strips are appended as shown in Fig. 8. Some, book-keeping needs to be done in order
to the relative position of the partition in the segment and for generation of local indices. The interpolation is then
carried out locally. The four points are obtained by the use of the local indices. The algorithm is outlined below.

The first-level refinement for the third approach. The individual steps are elaborated subsequently•

• Number of elements in E-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

• Pre-determine the degree of circulation

• Copy the partition into a large buffer called segment
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• Fetchpartitionsfromthesoutherndirectionandappendtosegment.

• Fetchpartitionsfromthenortherndirectionandappendtosegment.

• Convertglobalindicesto localindices.

• Performtheinterpolationlocally.

Thepre-determinationof thedegreeof circulationisexactlyasoutlinedinsection3.1.
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Thealgorithmforfetchingof partitions from the southern direction and appending to the segment is as below.

* Current partition bounds = Original partition bounds

- Copy partition into temporary buffer (depart)

, For number of hops in southern direction

- Send upper & lower bounds of current partition to northern node.

- Receive upper & lower bounds of new partition from southern node.

" - Send 'depart' to northern node.

- Receive new partition from southern node in buffer 'landing'.

- Update parameters needed for generation of local indices.

- Move up the previously filled columns in the segment by width of the new partition (southern partitions
occupy lower indices in the segments [Fig. 8]).

- Append the new partition to the 'southern end' of the segment.

- Update width of segment.

- Copy 'landing' into 'depart'

The algorithm for fetching of partitions from the northern direction and appending to the segment is as below.

• Current partition bounds = Original partition bounds

• Copy partition into temporary buffer (depart)

• For number of hops in northern direction

- Send upper & lower bounds of current partition to southern node.

- Receive upper & lower bounds of new partition from northern node.

- Send 'depart' to southern node.

- Receive new partition from northern node in buffer 'landing'.

- Update parameters needed for generation of local indices.

- Append 'landing' to the 'northern end' of the segment; northern partitions occupy higher indices in the

segment [Fig 8].

- Update width of segment.

- Copy 'landing' into 'depart'
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The local indices are generated with the following considerations :

• The first column in any segment does not necessarily correspond to column '1' in the wind component.

• There maybe a wrap around in the southern direction; i.e. the southern most node communicated may cross
the south pole.

• Similarly there may be a wrap around in the northern direction•

The algorithm generation of local indices is as below. Fig. 9 illustrates the algorithm.

• co_lower = lower bound of non-wrapped part of segment

• wrJower = lower bound of wrapped part of segment

• wrapd - width of wrapped part of segment•

• Let 'njj' denote the set of new (local) indices

• If there is no wrap around in either direction

- for i = 1, imp3

* for j = 1, range

• njj(ij) = jj(id)- co_lower + 1

• If there is wrap around in southern direction

- for i = 1, imp3

* for j = 1, range

• ifjj(id) .ge. wr_lower then njj(id) = jj(id)- wr_lower + 1

• Else njj(id) = jj(id) + wrapd

• If there is wrap around in northern direction

- for i = 1, imp3

, for j = 1, range

• ifjj(i_i) refers to the wrapped part then njj(ij) = jj(ij) + jmp3- co_lower + 1

- Else njj(id) = jj(id)- co_lower + 1
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The algorithm for the bilinear interpolation is as below. This is similar to the algorithm in the serial code, excepting

that local indices are used to index a segment of the wind component on every processor.

• Let 'seg' denote segment

• Let 'njj' denote new (local) jj

• Number of elements in E-W direction for a partition is imp3

• Number of elements in N-S direction for a partition is range

!

• for j = 1, range

- for i : 1, imp3
value at interpolated point = (1.0- delx(ij)) * ((1.0 - dely(ij)) * seg(ii(ij), njj(ij)+2)) + dely(ij) *

seg(ii(ij), njj(ij)+3) + delx(ij) * ((1.0 - dely(ij)) * seg(ii(ij)+l, njj(ij)+2) + dely(ij) * seg(ii(ij)+l,

njj(ij)+3))

G. Implementation

The project was implemented on CM-5 (CMOST 7.3) using the native message passing library [6]. This was
developed as a proof of concept that the message passing paradigm was a suitable way of implementing a parallel

version of the Semi-Lagrangian Transport code. It is hence highly modular and has about five levels of subroutine calls.

Though this allows for the easy testing of the code, it conflicts with the requirements of high performance computing
in that the overall running time drastically increases. This prompted us in measuring computations without the

function calling overhead. Therefore the running time of a production code would be between the timings with the
function call overhead and without the overhead. Ideally we would like it to be closer to the timings without the

overhead.
The third approach was implemented and instrumented for measuring performance as discussed in the next section.
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H. Performance

ThetimingswereobtainedonCM-5onCMOST7.3ona32nodepartition.Thesamecodewasrunonasingle
nodeof theCM-5in orderto measurethespeedup5. The performance is discussed for both bicubic and bilinear

interpolations with respect to the five criteria discussed in the Introduction. They are as follows :

* The overall running time.

• The maximum displacement in terms of nodal distance in the N-S direction.

• • Ratio of calculation to communication.

• Speed-up of interpolation

• Accuracy of calculations

Before discussing the performance issues, we will first define the following terms :

• Averaged Maximum Number of hops to northern nodes N'/.

• Averaged Maximum Number of hops to southern nodes SI.

• Total Number of hops in both directions TI = (NI + SI).

• The total communication time per iteration of fetching or gathering partitions from southern (or northern nodes)
Temp. This is the sum of the time for sending and receiving a bound of the partition plus sending and receiving
a partition. This time is derived by measuring the communication time for various message sizes.

• Time required for bicubic (or bilinear) interpolation on the 32 node partition (without function overhead) T_,,t.

• Time required for bicubic (or bilinear) interpolation on the single node (without function overhead) T_,,t..

• Speedup of bicubic (or bilinear) interpolation Si,,t = Ti,t,/Tint.

• Time required for reduction of address calculations on the 32 node partition (without function overhead) Try.
This overhead is a result of the implementation of the code for the Bicubic Interpolation alone and does not
show up at the design stage.

• Time required for reduction of address calculations on the single node (without function overhead) Tra,.

• Speedup of reduction of address calculations Sra = Tra./Tra.

• Time required for conversion of the global indices to local indices on the 32 node partition (without function
overhead) T/i.

• Time required for conversion of the global indices to local indices on the single node (without function overhead)
T/G •

• Speedup of conversion to local indices Sti = Tti,/T/i.

• Time taken for node-to-node communication (circulation of partitions of winds and the bounds of the partition)
on the 32 node partition Too,.

• The product of TI and Te_p is T¢o,,. This is approximately equal to Teo, •

• Time required for book-keeping and buffer copying in creation of segment (no function calling overhead or
node-to-node comunnication is accounted for) on the 32 node partition Tb,.

5The flow of program execution within a subroutine is however, not necessarily the same. This results in less than ideal
speedup for some parts of the code.
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• Timerequiredfor book-keepingandbuffercopyingin creationof segment(no functioncallingoverheadis
accountedfor) onthesinglenodeThe.. There is no communication required on tile single node for creation of

segment.

• Time required for creation of segment on the 32 node partition To, = The + Teo..

• Speedup of buffer copying in creation of segment Sbc = Tbe,/Tbe. This indicates how well the buffer copying
alone scales when comparing the timings on the 32 node and the single node in CM-5. The next speedup
includes the cost of the node-to-node communication which is a part of the "creation of segment" function It

is a "gathering" process..

• Speedup of creating a segment Sos = Tbe,/Tbc. This includes the node-to-node communication overhead in the

computation of the speedup.

• Time taken for global maximum operation on the 32 node partition Teog.

• Time taken for finding local maxima in determining degree of circulation (no global reduction involved) on 32

node partition Tdcl.

• Time taken for determining degree of circulation Tale = Tdcj + Teog.

• Time taken for finding local maxima in determining degree of circulation on single node partition. Note the

single node does not need a global maximum operation Taler,.

• Speedup of finding local maxima (calculations) Sdez = Td¢t,/Td_t. This indicates how well the computation alone
scales when comparing the timings on the 32 node and the single node in CM-5. The next speedup includes the

cost of the global maximum operation.

• Speedup of finding degree of circulation Sale = Td_z,/Tale. This speedup includes the cost of the global maximum

operation.

• Time taken for latitude, longitude index calculations (no function calling overhead) on the 32 node partition

• Time taken for latitude, longitude index calculations (no function calling overhead) on the single node 7]1,.

• Speedup of latitude, longitude index calculations S, = T,,/Tu.

• Total calculation (overall) time (with function calling overhead and timing overhead) on the 32 node partition

T¢a,. This is the sum of Tea. and function calling overhead.

• Total communication time (includes both global communication and node to node communication) on the 32

node partition Teo = Teog + Too,

• Ratio of calculation time (overall) to communication time on the 32-node CM-5 Ra = Tca°/Tco

• Total calculation time (adjusted, i.e. no function calling overhead) on the 32 node partition Te,,, = Tu + Td_t +

Tb_+ T. + [T_a]+ T_.,6

• Ratio of calculation time (adjusted) to communication time on the 32-node CM-5 Ra = Tea,/Too.

• Total calculation time (adjusted, i.e. no function calling overhead) on the single node Tea,, = Tu. + Td_t, +

The. +Tu. + [T,,.] + T/,, .

• Speedup (adjusted) Sa = Tea../(Tea. + Too).

• Total (Overall) running time Tot (includes function calling overhead, communication overhead and timing over-

head) on a 32 node partition on CM5. Tgt = Tea° + Teo • This is also the sum of Tea., Teo and function calling
overhead.

6Tra is shown in square brackets as there is no reduction of address calculations for Bilinear Interpolation. Similarly T_,. is
shown in square brackets for the definition of T¢_.,.
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• Total(Overall)runningtimeTot, (includes function calling overhead and timing overhead) on a single node on
CM5. This is the sum of Tea,, and function calling overhead.

• Speedup (overall) So = Tgto/Tat.

The first table shows the non-linear nature of the communication overhead versus message size. The overhead
decreases as message size increases from 0 to 8 bytes. Somewhere between a size of 8 to 16 bytes, the overhead starts

increasing again and again becomes lower at 32 bytes. The machine also exhibits a high latency; for example messages
of size 64 bytes takes nearly the same amount of time as a message of 256 bytes for a synchronous send and receive.

a. Table 1 : Communelation Time

'vs Message Size
Message Size Communication
(bytes)
0
1

2
4

8

16
32
64

256
512
1280

2048
5120

7168
10000

22528

Time (ms)
0.226

0.200

0.176
0.172
0.155

0.221
0.218

0.232
0.250
0.300

0.428
0.799

1.584
1.751

2.591
5.218

Table 2 shows the message size used at a given resolution. From Tables 1 and 2, we derive the values for Temp. T_p
is the sum of the times for communicating the bound of a partition (4 bytes long) and the partition itself (message
size at given resolution).

b. Table 2 : Message Size Used At
Given Resolution

Resolution

(bytes)

(8x64)
(64x64)
(128x128)

(128x256)
(256x512)

Message Size
(bytes)
256
2048
5120

7168
22528

I. Bicubic Interpolation

The reconstruction of segment approach was adopted for the bicubic interpolation. Table 3 shows the overall results

with the function calling overheads. Table 4 shows the overall results without function calling overhead 7 . Tables 5
to 9 show the functional breakup of the timings in Table 4.

7The function calling overhead does not apply to the timing of the communication routines.
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Table 3 : Overall Resu
ResolutionTot Tot, ISo Tea. Teo Ro

(I,J) ms ms I ms ms

(8,64) 14.62 190.00 13.0 11.86 2.76 4.29
(64,64) 63.60 1146.20 18.0 58.41 5.18 11.26

(128,128) 211.19 4500.30 21.2 213.76 8.17 24.94
(128,256) 396.70 9122.0023.0 388.00 8.66 44.78
(256,512) 1740.40 -- ,- 1718.5 21.91 78.43

,Table 4 : Results Without Function

Callin_ Overhead
Resolution Tea. R_ Tea.. S_

(I,J) ms ms
(8,64) 4.85 1.75 85.1 11.18

(64,64) 26.42 5.09 522.8 17.5
(128,128) 92.04 11.27 1985.0019.8

(128,256) 173.45 20.01i4034.00 22.15
(256,512) 714.75 32.62[--

Table 5 : Functional Breakup
of Table 2 Timin

Resolution Ttl Tu, Stt

(I,J) ms ms
(8,64) 0.58 15.16 26.14

(64,64) 3.20 92.34 28.86
(128,128) 12.76 364.7 28.58

(128,256) 27.57 732.5 26.56
(256,512) 99.24-

32



Table 6 : Functional Breakup of Table 2

Timings

Resolution Tc% Tdel Tale Tad° Sdel Sd¢
(I,J) ms ms ms ms

(8,64) 0.0774 0.59 0.667 13.82 23.42 20.70
(64,64) 0.0829 3.30 3.38 77.26 23.41 22.88
(128,128) 0.0930 12.99 13.08 305.68 23.53 23.37

(128,256) 0.0910 26.29 26.38 613.21 23.32 23.24

(256,512) 0.1070 108.8 108.9

Table 7 : Functional Breakup of Table 2
Timings

Resolution Tco_ T_c T_, Tb_, Sb_ S_,
(I,J)
(8'1'64)

(64,64)

(128,128)
(128,256)
(256,512)

ms ms ms ms
2.69 1.51 4.2 5.52 3.66 1.31

5.116.81 11.92 33.65 4.94 12.82
8.08117.31 25.39 128.77 7.44 5.07

8.57 24.41=32.98 293.8 12.04 8.91
21.8 87.35! 109.15 --

Table 8 : Functional Breakup of Table 2

Timings
Resolutior

(I,J)
(8,64)
(64,64)
(128,128)
(128,256)
(256,512)

&i T,o Tro. &a
ms ms ms ms
0.274 2.16 7.88 0.85 15.03 17.68

1.55 13.77 8.88 5.42 89.55 16.52

4.04 53.17 13.16 20.93 360.56 17.22
5.55 109.65 19.75 42.80 734.56 17.16
17.2 90.92

Table 9 : Functional Breakup of Table 2
Timing:

Resolution 2q,t _q,,t, Si,,t
(I,J) ms ms

(8,64) 1.04 34.02 32.7
(64,64) 6.13 216.25 35.28
(128,128) 24.02 777.20 32.15 !

(128,256) 46.81 1550.933.12

(256,512) 311.29
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Table 10 : Experimental Confirmation of
Node-to-Node Communication Time T_o,

Resolution NH SH TH Te_p T_o.e
(I,J) ms ms
(8,64) 4.0 1.5 5.5 0.422 2.32

(64,64) 4.2 1.5 5.7 0.971 5.53
(128,128) 3.1 2.0 5.1 1.756 8.96

(128,256) 2.0 !2.0 4.0 1.923 7.69
(256,512) 2.0 2.0 4.0 5.390 21.56

Since the code has 5 levels of subroutine calling, there is approximately a factor of 2 difference between the
overall timings with and without the function calling overhead. A good production code would have a overall timing
somewhere between these two figures s

The inter-nodal distance seems to be fairly static for both components (north, south directions inclusive). On an

average this is 4 "cshifts" in the Northern direction or 1.5 "cshifts" in the Southern for a resolution of 8 x 04. This
appears to stabilize at 2 "cshifts" in either direction at higher resolutions as seen from Table 10. This is close to the
assumption that the winds generate mostly nearest neighbor coriamunication.

The ratio of calculation to communication ( Ro or R, ) (Tables 3,4) falls with increasing resolution becaus_ of two
factors, namely :

• High latency in the communciation overhead. Due to high latency, it takes almost the same time to send and
receive a message of 256 bytes as a message of size 64 bytes.

• The decreasing total number of cshifts TI. The total number of "cshifts" falls from 5.5 to 4.

It is obvious that this algorithm is dominated by overheads other than communication at high resolutions, which will

be established shortly 9
It is also noticed since the function calling overhead is high, the ratio R_ is less than Ro. Consequently, the speedup

So is lower than So. However, So itself is much lower than ideal. At low resolutions, this is primarily due to the high

communication overhead 10, but does not hold true at higher resolutions. Hence, a complete picture of speedup will

not emerge without a detailed discussion at the functional level of the code. We will first tabulate the functions in
order of increasing speedup for the resolution of 8x64 (Table 11) from the data in Tables 3 to 7 and then analyze the
reasons for the performance. We will do this similarly for a higher resolution of 128x256 (Table 12).

sit is not desirable to eliminate totally the function calling overhead except where it is in excess. For example, one should

inline the calls to tile actual interpolation routine as it is called within an inner loop of a doubly nested loop.
9Communication overhead is only 1.28 % at a resolution of 128x256.
l°At a resolution of 8 x 64, the ratio Ro is as low as 4.29.
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a,

Resolution of 8 x 64:
Function

Table 11 : Functional Breakup of Timings at a

Creation of Segment (cs)

Buffer Copying in above (be)
Conversion to Local Indices (li)

Reduction of Address Calculation (ra)
Degree of Circulation (de)

Computation alone in above (dcl)
Latitude, Longitude Index Calculations (11)
Ihterpolation (int)

Speedup %age of Tca.+ Too
1.31 53.98 %

3.66 19.79 %
7.88 3.65 %

17.68 11.14 %
20.70 8.83 %

23.42 7.68 %
26.14 7.68 %

32.7 13.45 %

%age of Tot
28.1%
10.3 %

1.9%
5.8 %
4.6%
4.0 %

4.o%
7.0 %

The "creation of segment" function shows a very low speedup primarily because it involves node-to-node commu-

nication with high latency. But, this does not account for all the loss in speedup (speedup of buffer copying is also

at a low of 3.66). This is because there are more places in the 32-node run where there is buffer copying 11. The
term buffer copying includes memory to memory copying and the book-keeping associated with it. There is some

load imbalance in the memory to memory copying, especially at the low resolutions, due to nodes at the poles having
to deal with a larger partition (8x5 instead of 8x2) as shown in Figure 2. These nodes also have to handle with the

pole-wrap problem 12 which are absent in other nodes, leading to an additional load imbalance. The load imbalance

is apparent from the fact that at the next higher resolution (64x64), though the grid points have increased by 8, the
amount of time spent in buffer copying increases by 4. Otherwise the buffer copying scales with number of grid points.
In the single node we find that the time spent in buffer copying scales well with the number of grid points.

Taking into account the implementation and the sizes of buffers involved in both the runs, the single node run
performs only about 6 times the amount 13 of buffer copying as the 32 node run. This is slightly more than the

speedup of 3.66. However, due to the load imbalance the drop in speedup can be expected . As the buffer copying
alone takes 19.79 % of running time (without function calling overhead), this has a significant effect on the overall
speedup 14

The speedup of "conversion to local indices" is also Low. This could be due to an error in measurement of a very
small interval of time (0.27 ms) in the 32-node run. There is also the possibility that due to a load imbalance that
affects the nodes corresponding to the polar regions which have to translate indices that cross the poles, that the

speedup is low. This code involves testing of a condition in the innermost loop of a doubly nested loop. This does not

occur in the single node run where only a straight forward translation to local indices takes place. But, the impact of
this function is slight as it constitutes only 3.65 % of the running time (which is the least of all the functions).

The "reduction of address calculations" constitutes about 11.14 % of the running time. The number of times it is

called for the 32-node run is equal to the number of grid points in a partition. There are 16 grid points at a resolution
of 8x64. Therefore the approximate time per call is only 53 #s which spans 8 integer operations. The measurement
of such a small time is prone to errors, which may have led to a somewhat moderate speedup of 17 to 18. 15

The "degree of circulation" has a moderate speedup of 20.7. When the global maximum operation is left out, the
speedup is about 23.4, which is fairly high. As the global maximum operation is a constant overhead, its effect at
higher resolutions becomes negligible. As the code involves testing of conditions and as the quantities involved are

dynamically varying with both time and space, it is difficult to pinpoint how the speedup is affected. Additionally
this function has no significance for the single node run.

The "calculation of latitude, longitude indices" shows a good speedup of 26.1. This involves a mix of integer and
floating point arithmetic.

The actual "bicubic interpolation" shows more than ideal speedup. The timing of this routine has the same

drawback as the "reduction of address calculations". As the time intervals involved are very small, about 65/zs, the

measurements are prone to errors. However, it may be concluded that this function has a good speedup even after

11Though both the single node and the 32 node run the same code, because the single node has no communication to perform,

it does not need to perform the buffer copying associated with the sending and receiving of partitions. In other words the single
node program traces a different path through the code. We will hereafter refer to this as a run.

1:Fetching of partition by wrapping around the pole, needs more book-keeping.
13Not to be confused with number of places
l_Inclusive of the communication cost, it takes the lion's share of the running time at 53.98 %.
15Even the timings for the single node run suffer from the same defect.
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discounting for any errors.
The overall speedup Sa is therefore poor because functions which have poor speedups (< 16) constitute 57.6 % of

running time (with no function calling overhead), those with medium speedup (16 < speedup < 23) constitute 20.0
% and those with good speedups 22.2 % (> 23) 16

b. Table 12 : Functional Breakup of Timings at a

Resolution of 128x256;
iFunction

Creation of Segment (cs)
Buffer Copying in above (be)
Reduction of Address Calculation (ra)
_onversion to Local Indices (li)

Degree of Circulation (dc)
Computation alone in above (dcl)

Latitude, Longitude Index Calculations (il)

Interpolation (int)

Speedup
8.91

12.04
17.16

19.75
23.24

23.32
26.56
33.1

%age of T_a. + T¢o
18.1% ........

13.40 %
23.53 %

3.05 %
14.49 %
14.42 %
15.14%

25.70 %

%age of To,
8.31%
6.15 %

10.8 %
1.4 %

6.65 %
6.62 %
6.95 %

11.8 %

At this resolution cache miss penalties play an important role as seen from Tables 5 to 9 where there is a jump in

speedups from the 128x128 to 128x256 resolution 17
Using the same reasoning as in the case of 8x64 resolution for the "creation of segment" function, the single-node

run has about 6 times the amount of buffer copying as the 32 node-run. However, the speedup of buffer copying is

12.04 which is two times more than expected. This is most likely due to caching effects. It can also be seen that there

is an increase of 1-1/2 times in The compared with a two-fold increase in the number of grid points from a resolution
of 128x128. This indicates that the load imbalance due to unven partition size and pole wrapping is becoming less

severe compared to a resolution of 8x64.
The node-to-node communication is still expensive as the speedup inclusive of this cost falls to 8.91 from 12.04.

However, the adverse effect of the "creation of segment" function is less on the overall speedup as it only takes 18.1

% of the running time compared to 53.98 % at the 8x64 resolution.
The speedup of "conversion to local indices" increases to 19.75. This is certainly due to cache misses, because at a

resolution of 128x128 the speedup is only 13.2. At the 128x128 resolution the accuracy of the timing measurements

should be good as there are 512 iterations taking place. The speedup is not better than 19.75 probably because of
the load imbalance problem at the nodes corresponding to the poles.

The measurement of the total time for the "reduction of calculations" suffers from the drawback discussed earlier.

The speedup for this function shows little variance (Table 8). But since it now constitutes 10.8 %, it does little to

contribute to a better speedup.

The "degree of circulation" has a fairly high speedup of 23.24. The global maximum operation now constitutes a
negligible amount of the time spent in the function, as seen in the difference in speedups SdCt and Sd¢.

The "calculation of latitude, longitude indices" shows a good speedup of 26.56.
The actual "bicubic interpolation" as before shows more than ideal speedup due to the drawback discussed earlier.
Thus the overall speedup Sa is better because functions which take major part of running time (55.35 %) have

good speedups (> 23). About 12 % of the code has medium speedup ( 16 < speedup < 23 ) and the rest has a poor

speedup (< 16).
An accuracy of upto (but not including) the fifth decimal place was obtained between the parallel and serial

implementations.
Table 10 confirms the accuracy of the node-to-node communication overhead . The results from the secondary

experiment, Teo,, and Too, match closely.

lSThe classification of poor, medium and good speedups may seem arbitrary. But this distinction serves the purpose considering
that timings were obtained on a 32 node machine.

17It was not possible to run at a resolution of 256x256 on the single node due to lack of memory.
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_. Bilinear Interpolation

The reconstruction of segment approach was also adopted for the bilinear interpolation. Table 13 shows the overall
results with the function calling overheads. Table 14 shows the overall results without function calling overhead ls

Tables 15 to 19 show the functional breakup of the timings in Table 14. We obtain very similar results for certain
functions in the code, because the code is essentially the same excepting for the actual interpolation routine. There
is also no "reduction of address calculation" function in this code.

Table 13 Overa Results
l_esolution Tot Tot, So Tcao Teo Ro
(I,J) ms ms ms ms

(8,64) 10.50 96.88 9.23 8.22 2.27 3.62

(64,64) 41.12 589.6 14.34 36.63 4.49 8.176
(128,128) 128.46 2280.0 17.74 112.036.43 18.97

(128,256) 240.47 4717.0 19.60 232.05 8.42 27.56
(256,512) 955.20 930.68 24.53 37.95i

Table 14

Calling Overhead

: Results Without Function

]Resolution' Tea° Ra Tea°, Sa
(I,J) wis ms
(8,64) 3.37 1.48 47.31 8.39

(64,64) 16.17 3.60 290.3 14.05
(128,128) 52.63 8.18 1142.0 19.34

(128,256) 98.37 11.68 2349.1 22.03

1(256,512) 381.45 15.55

Table 15
of Table

: Functional Breakup
2 Timin

Resolution Tu Tu. Su

(I,J) ms ms
(8,64) 0.61 14.72 24.09
(64,64) 2.95 91.87 31.14
(128,128) 11.19 364.8 32.60

(128,256) 22.53 733.0 32.60

(256,512) 91.23

lSThe function calling overhead does not apply to the timing of the communication routines.
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Table 16 : Functional Breakup of Table 2

Timings

Resolution Too, Tact Ta¢ Tacz. Sdca Sac
(I,J) ms ms ms ms
(8,64) 0.0756 0.60 0.67 11.55 19.40 17.21

(64,64) 0.0797 3.27 3.35 69.09 21.12 20.64
(128,128) 0.0907 12.88 12.97 276.50 21.47 21.31
(128,256) 0.0890 25.72 25.81 556.30 21.63 21.55

(256,512) 0.0946 102.7 102.79

Table 17

Timings
Resolution Too,
(I,J) ms

(8,64) 2.20
(64,64) 4.41

(128,128) 6.34
(128,256) 8.33
(256,512) !24.43

: Functional Breakup of Table 2

The T. Tb .
ms ms ms

1.47 3.67 5.50

5.98 I0.39 34.59

14.50 20.84 128.69

24.66 32.99 296.50

87.54 iii.97-

_c Sos

3.74 1.50

5.78 3.33
8.88 6.18

12.02 8.99

Table 18

Timings
Resolution

,(I3)

(8,64)
(64,64)

(128,128)
(128,256)

(256,512)

: Functional Breakup

Zli Tli. Sli

ms ms

0.28 2.19 7.96

1.56 13.63 8.74
3.86 53.13 13.76
5.44 108.9 20.02

17.2

of Table 2

Table 19 : Functional Breakup of Table 2

Timings
Resolution

(I,J)

-(8,64)
(64,64)
(128,128)

(128,256)
(256,512)

%., Ti.,. &.,
ms ms

0.410 13.36 32.59

2.40 81.11 33.8
10.21 318.78 31.22
19.25 654.56 32.81

82.81
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Table20 : Experimental Confirmation of

Node-to-Node Communication Time T¢o,

Resolution NH SH TH Te_p T_o._
(I,J) ms ms

(8,64) 3.33 1.67 5.0 0.422 2.11

(64,64) 3.33 1.67 5.0 0.971 4.86
(128,128) 2.00 1.93 3.93 1.756 6.90

(128,256) 2.0 2.0 4.0 1.923i7.692
(256,512) 2.0 2.0 4.0 5.390 21.56

Since the code has 5 levels of subroutine calling, there is approximately a factor of 2 difference between the

overall timings with and without the function calling overhead. A good production code would have a overall timing
somewhere between these two figures. We would like the timings to be closer to the value of Tc_. + Too than Tot.

The inter-nodal distance seems to be fairly static for both components (north, south directions inclusive). On an
average this is 3.33 "cshifts" in the Northern direction or 1.67 "cshifts" in the Southern for a resolution of 8 x 64.

This appears to stabilize at 2 "cshifts" in either direction at higher resolutions as seen from Table 10. This is close to
the assumption that the winds generate mostly nearest neighbor communication.

The ratio of calculation to communication ( Ro or R, ) (Tables 13,14) falls with increasing resolution because of
two factors, namely :

* High latency in the communciation overhead. As observed earlier, it takes almost the same time to send and
receive a message of 256 bytes as a message of size 64 bytes.

* The decreasing total number of cshifts TI. The total number of "cshifts" falls from 5.0 to 4.

It is obvious that this algorithm is dominated by overheads other than communication at high resolutions, which will
be established shortly 19

It is also noticed since the function calling overhead is high, the ratio Ra is less than Ro. Consequently, the speedup
S, is lower than So. However, So itself is much lower than ideal. At low resolutions, this is primarily due to the high
communication overhead 20 but does not hold true at higher resolutions. Hence, a complete picture of speedup will
not emerge without a detailed discussion at the functional level of the code. _l. We will first tabulate the functions

in order of increasing speedup for the resolution of 8x64 from the data in Tables 13 to 19 (Table 21) and then analyze

the reasons for the performance. We will do this similarly for a higher resolution of 128x256 (Table 22).
a. Table 21 : Functional Breakup of Timings at a
Resolution of 8 x 64:

Function Speedup

Creation of Segment (cs) 1.50
Buffer Copying in above (be) 3.74

Conversion to Local Indices (li) 7.96
Degree of Circulation (de) 17.21
Computation alone in above (dcl) 19.40

Latitude, Longitude Index Calculations (ll) 24.09
Interpolation (int) 32.59

%age of T_, + T_o
65.07 %
26.06 %

4.96 %
11.88 %
10.64 %

10.82 %
7.27 %

%age of To,
34.95 %

14.00 %
2.67 %

6.38 %
5.7%
5.8%
3.90 %

The "creation of segment" function shows a very low speedup primarily because it involves node-to-node commu-
nication with high latency. As discussed in the case of the Bicubic Interpolation, this does not account for all the loss

in speedup. There is some load imbalance in the memory to memory copying, especially at the low resolutions, due to
nodes at the poles having to deal with a larger partition (8x5 instead of 8x2) as shown in Figure 2. These nodes also
have to handle with the pole-wrap problem which are absent in other nodes, leading to an additional load imbalance.

The load imbalance is apparent from the fact that at the next higher resolution (64x64), though the grid points have

1°Communication overhead is only 2.64 % at a resolution of 128x256.

2°At a resolution of 8 x 64, the ratio Ro is as low as 3.62, whereas at 128x256 Ro reaches a high of 37.95.

21Another notable aspect is that the overall speedups for the Bilinear Interpolation is lower than that for Bicubic Interpolation.
This is because the actual interpolation routine for the Bilinear Interpolation involves only 6 floating-polnt multiplications
compared to 36 for the Bicubic Interpolation.
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increasedby8,tile amountof timespentin buffercopyingincreasesby4. Otherwisethebuffercopyingscaleswith
numberof gridpoints.In thesinglenodewefindthat thetimespentin buffercopyingscaleswellwith thenumber
ofgridpoints.

Thespeedupofbuffercopyingisalsolow,astherearemoreplacesin the32-noderunwherethereisbuffercopying.
Takingintoaccounttheimplementationandthesizesofbuffersinvolvedinboththeruns,thesinglenoderunperforms
onlyabout6 timestheamount22of buffercopyingasthe32noderun. This isslightlymorethanthespeedupof
3.66,but thisisexpecteddueto loadimbalance.Asthebuffercopyingalonetakes26.06%ofrunningtime(without
functioncallingoverhead),thishasasignificanteffectontheoverallspeedup23

Thespeedupof "conversionto localindices"is alsolow,liketheBicubicInterpolation.Thiscouldbedueto an
errorinmeasurementofaverysmallintervalof time(0.28ms)in the32-noderun.Thereisalsothepossibilitythat
dueto aloadimbalancethataffectsthenodescorrespondingtothepolarregionswhichhaveto translateindicesthat
crossthepoles,that thespeedupis low.But,theimpactofthisfunctionisslightasit constitutesonly4.96%ofthe
runningtime(whichis theleastofall thefunctions).

The "degreeof circulation"hasa moderatespeedupof 17.21.Whentheglobalmaximumoperationis left out,
thespeedupis about19.40,whichismedium.As the global maximum operation is a constant overhead, its effect at

higher resolutions becomes negligible. As the code involves testing of conditions and as the quantities involved are
dynamically varying with both time and space, it is difficult to-pinpoint how the speedup is affected. Additionally
this function has no significance for the single node run.

The "calculation of latitude, longitude indices" shows a good speedup of 24.09 which involves a mix of integer and

floating point arithmetic.
The actual "bilinear interpolation" shows more than ideal speedup. The timing of this routine has the same

drawback as the "reduction of address calculations". As the time intervals involved are very small, the measurements

are prone to errors. However, it may be concluded that this function has a good speedup even after discounting for

any errors.
The overall speedup S, is therefore poor because functions which have poor speedups (< 16) constitute 70.02 % of

running time (with no function calling overhead), those with medium speedup (16 <_ speedup <_ 23) constitute 11.88
% and those with good speedups 18.1% (> 23) 24

b. Table 22 : Functional Breakup of Timings at a
Resolution of 128x256:

Function Speedup ]%age of To,. + Too

Creation of Segment (cs) 8.99 30.89 %

Buffer Copying in above (be) 12.02 23.09 %
Conversion to Local Indices (li) 20.02 5.09 %

Degree of Circulation (de) 21.55 24.17 %
Computation alone in above (dcl) 21.63 24.08 %

Latitude, Longitude Index Calculations (ll) 32.60 21.09 %
Interpolation (int) 32.81 18.02 %

%age of Tot
13.72 %

10.25 %

2.20 %
10.73 %

10.70 %
9.37 %

8.01%

As discussed in the case of the Bicubic Interpolation, at this resolution, the jumps in speedups compared to the
128x128 resolution is due to cache misses. 2s

Using the same reasoning as in the case of 8x64 resolution, the single-node run has about 6 times the amount of

buffer copying as the 32 node-run for the "creation of segment" function. However, the speedup of buffer copying is
12.04 which is two times more than expected. This is most likely due to caching effects. It can also be seen that there
is an increase of 1.7 times in Tbc compared with a two-fold increase in the number of grid points from a resolution
of 128x128. This indicates that the load imbalance due to unven partition size and pole wrapping is becoming less

severe compared to a resolution of 8x64.
The node-to-node communication is still expensive as the speedup inclusive of this cost falls to 8.99 from 12.02. As

the "creation of segment" function still takes 30.89 % (13.72 % with function calling overhead) of the running time,
it affects the overall speedup adversely.

22Not to be confused with number of places
_3Inclusive of the communication cost, it takes the lion's share of the running time at 65.07 %.

2_The classification of poor, medium and good speedups may seem arbitrary. But this distinction serves the purpose considering

that timings were obtained on a 32 node machine.
251t was not possible to run at a resolution of 256x256 on the single node due to lack of memory.
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Thespeedupof "conversionto localindices"increasesto 20.02.Thisis certainly due to cache misses, because at a

resolution of 128x128 the speedup is only 13.76. At the 128x128 resolution the accuracy of the timing measurements
should be good as there are 512 iterations taking place. The speedup is not better than 20.0 because of the load
imbalance problem at the nodes corresponding to the poles.

The "degree of circulation" has a fairly high speedup of 21.55 The global maximum operation now constitutes a
negligible amount of the time spent in the function, as seen in the difference in speedups Sacj and Sd,.

The "calculation of latitude, longitude indices" shows more than ideal speedup of 32.60. This is due to errors in
measurement of timings.

The actual "bicubic interpolation" as before shows more than ideal speedup due to the drawback discussed earlier.

,Thus the overall speedup So or So is better than at a resolution of 8x64. The speedup is only medium because
functions which take major part of running time (60.15 %) have poor or medium speedups ( < 23 ). About 30.89 %

of the code has poor speedup (< 16) , another 29.26 % has medium speedup ( 16 < speedup < 23 ) and the balance
39.85 % the rest has a good speedup (> 23).

An accuracy of upto (but not including) the fifth decimal place was obtained between the parallel and serial
implementations.

Table 20 confirms the accuracy of the node-to-node communication overhead . The results from the secondary

experiment, Too,, and Tco, match closely.

I. Conclusions

A reasonable speedup maybe achieved by the message passing version. This problem is hard to parallelize because

of the following reasons. At low resolutions, the speedup is poor because of very high communication overhead 26
some load imbalance, and a fair amount of book-keeping and memory management involved. At higher resolutions
the amount of book-keeping and memory management dominate the communication 2r and load imbalance overheads.

But, unfortunately, these overheads are required for the working of the parallel algorithm and are difficult to reduce.
Hence, there is only a medium speedup. If the algorithm were to be ported to a machine with a low latency

communication network, the book keeping and memory managment overheads will still result in only a medium
speedup. However, there is scope for improving the overall running time by reducing the function call overhead.

2°For the bicubic interpolation, Too takes 57 % as much time as Tea,. For the bilinear interpolation, T_o takes 68 % as much
time as TcG,, which is even worse.
2rT_a takes only about 30 % as much time as Tb¢ for either the bicubic or the bilinear interpolations. Tbc itself takes about 14

% and 24.9 % of T¢, a for the bicubic and bilinear interpolations respectively.
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J. Appendix A: Bicubic Interpolation

The bicubic interpolation is used where more accuracy is desired than the bilinear interpolation. 2s The bicubic

interpolation used here is a two-step one-dimensional lagrange polynomial (cubic) interpolation.
The inputs to the bicubic interpolation consists of sixteen values arranged on a 3 cell x 3 cell grid as shown in figure

10. Using the sixteen values four cubic interpolations can be carried out using the four points available at each value
of ii (in the North-South direction). Then another cubic interpolation can be performed on the four resultant values

in the East-West direction (all of which reside on a straight line which is dely units away from the line y = jj + 3) to
obtain the desired value.

'Let P(y) = ao + aly + a2y 2 + aay a be a polynomial of third degree. The standard equation for the lagrange
polynomial interpolation is given by,

3

P(y) = ZfiLi(y) (17)
i=O

where,

• y is the point at which interpolation takes place.

• P(y) represents the desired value.

• fi are the known values on the grid at points Yi.

• Li(y) are the Lagrange polynomials such that Li(y) = II_i,_=o(y - yk)/(y_ - yk)

As shown in figure 10, considering the North-South direction. Let the position of point of interpoation be considered

relative to the lower right corner of the grid square in which it is located. It is A v units away from the lower right
corner in North-South direction.

In our usage [figure 10], let

• yi represent jj+2, jj+3, jj+l, jj+4, 0 < i < 3

• fl corresponds to the value ofwk at Yi, i = (k - 1)rood4, 1 < k < 16

As the grid points are evenly spaced, the computation of the Lagrange polynomials can be simplified as below,

Lo = [(y - Yl)(Y - Y2)(Y - Y3)]/[(yo - Y,)(Yo - Y2)(Yo - Y3)]

L0 = [(1 - Ay)(1 + A,)(2 -- Ay)]/(--1)(1)(--2) = 0.5 * (2.0 -- A,), (12 -- A_) -- A,2, (1.0 -- AI)

where, A_2 : 0.5 * (2.0 - Ay)
Similarly,

L1 = (AI + Ay), Ay2

L2 = (A_ - A_) , A_/3

L3 = (A_ - 1.0) * Ay/6

A similar reasoning holds for East-West direction. Let the subscript 'y' be used for quantities in the North-South
direction and 'x' for East-West. The algorithm for the bicubic interpolation is as follows.

• Inputs

_SThe bilinear interpolation is more economical than the bicubic interpolation and is hence used where more accuracy is not

required.
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- Sixteenvaluesat thegridpointsasin figure10
- RelativepositionsA., Ay

* Compute terms Au2 and A_ - 2 multiplications

• Compute terms A.2 and A_ - 2 multiplications

• Compute Lagrange polynomials Liy - 6 multiplications

• Compute Lagrange polynomials Lix - 6 multiplications

• Perform four lagrange interpolations in North-South direction - 4 x 4 multiplications

• Perform the final lagrange interpolation in East-West direction - 4 multiplications. This obtains the desired
value in a total of 36 multiplications.

• Return the desired value
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44



-jj

n_eO n_el node2 noden-1
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Fig. 5 The figure shows how the inter-nodal distance is computed. In node 0, the

global indice ii has the value 64 at location (70,1) and global indice ii has the

value 7. To be able to perform the interpolation the farthest indict neexiedis

jj = 10 (jj + 3) in the Northern direction for the bilinear interpolation.

However, ifjj were such that the points were more than half-way around

the globe, the southern most point jj + 2 is furthest. For simplicity

we usejj instead ofii + 2 in our calculations. These two arethe

most extreme points for the bilinear interpolation and are usedin the

calculation of the maximum inter-nodal distance for each jj.
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Fig. 7 The top half of figure shows a case where an individual partition is smaller than the overlap zone.

In this case two or more communication steps have to be carried out only for establishing the

overlap zone as shown in the bottom half of the figure. This maybe avoided as subsequent

communication steps fetch data which include the data in the overlap zone. An improved

algorithm is explained in the next figure.
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original

partition

Fig. 8 The figure shows the resulting block in a node after all communication steps.

There is no northern buffer created, however. Each node adds on a strip of

width w (with the suffix s for southern and n for northern) in the North-South

directions, depending on how far along the fluid trajectory one has to traverse

to be able to perform an interpolation. An individual strip width is the same

as that of a partition, i.e. w (s or n) is a multiple of the partition width.
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Fig 9 a. This figure shows a node which has no wrap around after the segment has been

fully reconstructed in either north or south directions. Global indices translate

to local indices in the North - South direction according to the formula

Local index = Global Index - co lower + 1

(10, 7) -- (10,7-5+1)=(10,3)
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Fig 9 b. This figure shows a node which has a wrap around in the southern direction after

the segment was fully reconstructed. Global indices translate to local indices in

one of two ways.

Case a) The global index refers to a value in the wrapped part.

Local Index = Global Index - wr_lower + 1

(10, 30) z (10, 30 -29 + 1) = (10, 2)

Case b) The global index refers to a value in the non-wrapped part.

Local Index = Global Index + wrapd

(10, 9) _ (10,9+4)=(10,13)
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fully reconstructed in either north or south directions. Global indices translate
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Local index = Global Index - co_lower + 1

(]0, 7) m (10, 7 - 5 + l) = (10, 3)
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the segment was fully reconstructed. Global indices translate to local indices in
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Case a) The global index refers to a value in the wrapped part.

Local Index = Global Index - wr._lower + 1

(10, 30) -- (10, 30 -29 + 1) = (10, 2)

Case b) The global index refers to a value in the non-wrapped part.

Local Index = Global Index + wrapd
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Fig 9 c. This figure shows a node which has a wrap around in the northern direction after

the segment was fully reconstructed. Global indices translate to local indices in

one of two ways.

Case a) The global index refers to a value in the wrapped part.

Local Index = Global Index +jmp3 - co_lower + 1

(10, 3) -- (10, 3 +32 -21 + 1)- (10, 15)

Case b) The global index refers to a value in the non-wrapped part.

Local Index = Global Index + co_lower + 1

(10,21) _- (10,21-21+1)=(10,1)
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VI. DATA PARALLEL IMPLEMENTATION OF QUALITY CONTROL FOR DATA ASSIMILATION
SYSTEM GEOS DAS 1

Four-Dimensional Data Assimilation is a Grand Challenge problem. It is a process of combining short term pre-
dictions from numerical models with experimental observations to produce minimum expected error estimates of the

evolving state of Earth's atmosphere. One of the missions of the NASA/Goddard Data Assimilation Office (DAO) is

to generate research-quality assimilated data sets for Earth Science, and in particular for the Earth Observing System

(EOS).
Data assimilation plays a central role in the Mission to Planet Earth enterprise. The assimilation process transforms

a heterogeneous and inhomogeneous observational data set into a time-continuous data set on a regular spatial grid.
On one hand, data assimilation propagates model information into observational-data-sparse regions; on the other
hand it is a valuable reality check of model predictions.

Development of advanced assimilation systems requires continual and timely reanalysis of multi-year data sets. Fu-
ture assimilation systems must incorporate chemical, oceanic and land-surface dynamics, in addition to the traditional

meteorological domain. Therefore, inherent computational requirements, combined with continuing reprocessing of
historical data sets, establishes data assimilation as one of the most compute-intensive tasks among NASA's Earth
Science efforts. It is expecetd that by the year 2000 DAO will require 150 GF sustained and 110 TB of storage. By

the year 2004, these numbers will grow to 1200 GF and 500 TB respectively.
Extrapolation of current trends in high-performance computing clearly indicates that massively parallel and dis-

tributed processing is the only way to satisfy DAO performance demands at an acceptable cost. Therefore, to ensure

viability of present and forthcoming DAO software in future high-performance computing environments and a smooth
transition to future scalable tIPC platforms, it is essential to perform:

• Examination of the potential for parallelization and scalability of operational algorithms at DAO,
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* Examinationof thepotentialfor parallelizationandscalabilityof candidatefuturealgorithmsat DAO,and

. Portingandbenchmarkingofexistingcodesontestbedparallelarchitectures.

Thesetaskswouldbedauntingevenwithouttheaddedaggravationof a rapidlychangingsoftwareandhardware
environmentwhichcharacterizesthecurrentstateof parallel computing. However, emergence of two standards of
parallel computation, which are among the major recent developments in this field, will have profound effects on DAO
software development.

High Performance Fortran (HPF), which is the industry standard set of parallalization-enabling extensions of For-
tran 90, promises top performance and portability on a wide variety of physically distributed memory platforms.

Message Passing Interface (MPI) standard will enable portability of message-passing codes without sacrificing com-
munication hardware performance. In addition to investigating intrinsic parallelism of DAO applications, our goal was
to explore possibilities and limitations offered by these two software environments, in light of the DAO operational

data assimilation system. One fundamental advantage of HPF is the abstraction of the underlying hardware from
the application developer. In this article, we will explore the benefits and pifalls of the HPF implementation of the
operational data assimilation system. We will first provide a brief introduction to the underlying algorithms and

related HPF language features. We will then describe parallelization strategies in detail and explain how are they
related to the HPF semantics. We will consider issues such as performance but will not dwell too much on them, since

the HPF compiler technology is not mature enough to provide desired levels of performance. Instead, we are more
interested in the features of the language itself, hoping to leverage upon futures improvements in compiler technology.

Finally, we will summarize our findings and outline likely future directions for parallelization of the next generation
of DAO data assimilation software, Physical-space Statistical Analysis System (PSAS).

A. Description of GEOS-DAS-1 Optimal Interpolation (OI) Analysis System

The current version of the assimilation system performs multivariate statistical interpolation analysis of sea-level

pressure and surface wind data over the oceans and geopotential height and wind fields on constant pressure surfaces.
In multivariate analysis pressure and temperature data are coupled with wind fields. The system also performs

univariate analysis of water vapor mixing ratio on constant pressure surfaces. The spatial grid of GEOS-DAS-1 analysis
system is a 2.0 ° x 2.4 ° latitude/longitude horizontal grid replicated over 14 analysis levels in the vertical direction.

The levels correspond to constant pressure surfaces at (20, 30, 50, 70,100,150,200,250,300,400,500,700,850, 1000)rob.
The analysis is coupled to a 20 pressure level, 2.0 o x 2.4 o horizontal resolution General Circulation Model (GCM) for
the troposphere and lower stratosphere.

We will describe the features of the GEOS-DAS-1 system which are relevant from the viewpoint of parallel algorithm
implementation only. For a complete description of the production assimilation system at DAO reader is referred to [4].

Also, we cannot dwell on mathematical or statistical content of the analysis equations. For a thorough introduction
to the subject of statistical interpolation, reader is referred to [2].

Statistical interpolation attempts to find optimal combination of erroneous experimental observations and erroneous

first guess (model prediction) which, by definition, minimizes expected error in the analyzed quantity. Model prediction
at the analysis time r will be denoted by vector 17! (f is for first guess). The array of observations in a 6-hour window
centered on r will be denoted by _. It is important to keep in mind that model arrays live on the regular spatial

(latitide-longitude) grid, while observational data have a continuum of locations. The analyzed data arrays are
conformal with model arrays in the horizontal directions. However, model variables are defined on o-coordinates,
while the analysis data are defined on "mandatory" pressure level surfaces, as described earlier. Analysis arrays will

be denoted by _a. Analysis, model and observations are related through the analysis equation:

_a = M(_I) + W[_" - HM(gl)] (18)

M denotes mapping function between model variables (temperature(T), wind(U, V), specific humidity (_), surface

pressure (P0) and a-coordinates to the analysis variables (geopotential height (Z), wind(U, V), water vapor mixing

ratio(p), sea-level pressure(P,t)) and pressure coordinates. H is an operator which interpolates model variables at the
observation locations using their values on surrounding model grid points. Matrix W contains the analysis weight:
each weight determines size of correction to a first guess value at a given grid point from a given observation. Number
of rows in W is equal to the number of model grid points, while the number of columns equals the number of

observations. It will be referred to as the gain matrix.

The gain matrix W is computed by minimizing the expected error variance of the analyzed data. It can be shown
[4] that the formal solution is:
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W = P/H T [HP/H T + R]-I (19)

where P] =< _']_-'f > is the first guess (background) error covariance matrix and R! =< _'o_-_o> is the observation
error covariance matrix. It is assumed that errors are unbiased and that background and observation errors are
uncorrelated. For a detailed description of the specification of background and observation error covariances, the

reader is referred to [4]. The analysis error covariance matrix is obtained as:

P. = [I - WH] P/ (20)

Analysis error variances are computed as diagonal metrix elements of Pa.
'Data ingest and preprocessing are required to convert raw data sets into an input data set acceptable for the analysis

algorithm described above. While this is a complex multi-stage procedure in the production system, we will be mostly
concerned with data quality control, which is computationally most demanding. Since the focus of this article is on
the application of High Performance Fortran to the Optimal Interpolation problem, issues related to I/O and system

integration are left for forthcoming publications.
GEOS-DAS-1 employs a two-stage quality control technique: a gross error check and a "buddy" check [4]. The gross

check compares the difference, 5, between an observation and the first guess value interpolated onto the observation
location, and a phenomenologically established threshold:

_2 > (_ + cry) x T (21)

In this equation, _o is the observation error variance, a I is the first guess error variance and t is a O(1), height-
dependant, subjectively established tolerance factor. If this test evaluates to true, the observation is flagged as
suspect and passed to the second quality control stage, the "buddy" check. Buddy check performs a successive-
corrections analysis of the suspect datum. If the equation 21 still evaluates to true after the analysis, the observation
is rejected. Rejection rates are usually between 5 and 10%.

A typical production assimilation run will process of the order of 105 observations. It is expected that this number
will grow to 106 within a decade or so. Therefore, the observation error covariance matrix will grow from o¢ 10i0
matrix elements at present to 1012 in the near future. Background error covariance matrix scales as the square of the
spatial grid size and has around 2 × 10s elements at a 2° × 2.5 ° resolution. It is clear that the assimilation problem size
is determined by the observation data set. It is also clear that the formal solution given by equation 19 is impossible
to implement in practice even on massively parallel machines, because of the observation error covariance matrix size.
Effective treatment of the observation data drives both the approximation strategies and the parallel implementation.

The approximation strategy employed by GEOS-DAS-1 consists of partitioning of the global analysis problem into
a large number of independent localized analysis problems of manageable size. First, the model and analysis grid
is divided into clusters of nearby grid points in latitude/longitude direction. The number and layout of the grid
points in a cluster depends on latitude and is hardwired for a particular resolution. Each cluster is extended into
the third dimension, so that the three-dimensional volume is divided into a number of non-overlapping cylinders.
Each cylinder constitutes a mlnl-volume. Second, the innovation vector covariance matrix is replaced by a localized
approximation which applies for all grid points in a mini-volume. The mini-volume technique scans for observations
within a predefined scan radius from the center of a mini-volume. Only these observations are used to construct the
covariance matrix. Essentially, a physically motivated cut-off is introduced into the error correlation functions. This
enables independent solutions for each mini-volume.

The mini-volume technique differs from the conventional analysis method because it does not scan for observations
within the scan radius from each grid point. Therefore, data selection and solution of covariance matrix are performed
once for all grid points in a mini-volume. Scan radius is presently set at 1600kin. Both the scan radius and layout
of mini-volumes are obtained experimentally to avoid discontinuities across mini-volume boundaries. Mini-volume

definitions are give in the Appendix.
Equation 19 is now applied for each mini-volume using the local approximation to the innovation vector covariance

matrix. The computationally expensive task is the inversion of the innovation vector covariance matrix, which is
accomplished using the standard Cholesky algorithm.

The above analysis algorithm is implemented in sequential modules for Surface Analysis, Moisture Analysis and
Upper Air Height and Wind Analysis. The modules cannot be spawned as independent tasks since the latter ones
depend on the outputs of the former ones. At present, we have parallelized the Surface Analysis module. Since it
operates on smaller data sets than the other two, it is easier to debug and verify results as well as less demanding
on I/O resources. On the other hand, it is a better candidate to explore parallelization issues, since it is likely to
generate higher communication overheads than the other two, as shown later on. Since the algorithms are almost
identical, our analysis and conclusions are valid for all three modules, unless stated otherwise explicitly.

To summarize, the computational flow of the OI analysis is as follows:
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• Quality Control

1. Gross check

2. Buddy check

• Construction of mini-volume covariance matrices

1. Data search within scan radius

2. Data sort and selection

, 3. Connovation vector covariance matrix preparation

• Solution of the analysis equation for each mini-volume

1. Computation of the gain matrix by applying the Cholesky method to Equation 19

2. Computation and storage of analysis data

We will now turn to the explanation of parallelization strategies for each computational stage.

B. Overview of Parallelization Strategies

Parallelization strategies for the mini-volume based OI algorithm are developed around three major types of data
objects:

1. model variables

2. observational data

3. mini-volume data

Model variables for Moisture and Upper Air Analysis are represented by three-dimensional arrays representing values
of physical quantities on a uniformly discretized grid of latitude/longitude/pressure(height) coordinates. Model data

for Surface Analysis are represented by two-dimensional arrays, corresponding to pressure, latitude and longitude
wind components on the latitude/longitude grid on the lowest pressure level.

Observational data are implemented as a linear list (array) of structures. Structure fields correspond to different

data attributes (lattitude, longitude, source, type, quality, value etc.) Mini-volume data constitute vectors and
matrices which define the linear system, given by Equation 19, associated with each mini-volume. Mini-volume index
can be viewed as an extra dimension in the label space of these arrays. Alternatively, mini-volume data can be viewed

as stacks of vectors and matrices, obtained from the model and observational data through a sequence of operations
detailed below. Parallelization strategy requires partitioning of data objects at each stage of the computation in the

most effective fashion, which depends on the transformations undergone by the data objects.
Quality Control phase is entirely independent of the mini-volume concept. Both gross check and buddy check are

characterized by sequences of operations applied on each item in the observation data array. Therefore, this phase

can be described as data parallel. Majority of operations can be described using the array syntax of Fortran 90. Some
transformations involve maps between the observational data index space and model data index space. The major

operation which couples observational data and model data is the interpolation from model grid onto the locations of
the observational data. It is this interaction between data and model index spaces which makes Quality Control highly

non-trivial for parallelization. In the parlance of data parallel languages, model and data arrays are non-conformal.
When the arrays are partitioned among the nodes of a parallel processor, mappings between the two index spaces

will be accompanied by non-local memory accesses. Minimizing the number of non-local accesses is essential for an
efficient parallel implementation.

Mini-volumes appear in the second stage of the computation, where for each mini-volume one identifies the obser-

vational data which belong to the mini-volume (i.e. observations located within the scan radius from mini-volume
center) and then selects the best data items among them which will be used for further computation. Using the

locations and types of the selected observations one constructs observational error covariance matrices. The two
covariance matrices are combined via Equation 19 into the innovation error covariance matrix, which, in turn, defines

the linear system for each mini-volume via Equation 19. By the end of this stage the original model and observation
arrays disappear as first class objects by being transformed into mini-volume stacks.

Mini-volume linear systems are independent from one another. In the third stage, the independent mini-volume
linear systems are solved using the Cholesky algorithm. Model and observational data objects are completely irrelevant
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duringthisstage.Oncethesolutioniscompleted,though,theresultsfromindividualmini-volumeproblemsmustbe
concatinatedandwrittenintotheanalyseddataarray,whichisconformalwith themodelarrayalonglatitudeand
longitudecoordinates.

It is clearfromthisflowanalysisthat, at differentstages,differentparadigmsof parallelcomputationmayapply.
Qualitycontrolcanbemostconvenientlyviewedasdataparallel,whiletheothertwostagesaretask-parallel-like.
Onemustcarefullyconsiderpenaltiesandtrade-offsin performanceanddevelopmentcostswhicharisefromsingle-
paradigmormulti-paradigmimplementations.

Giventhetimeandmanpowerconstraints,wehaveinitiallyadoptedtaskparallelismasourmainparallelization
strategyfor theproductionversionoftheOI code.Thisapproachisbasedonthepartitioningofmini-volumestacks
ar_ongthenodesof aparallelprocessor.Eachprocessorisresponsibleforthemini-volumesembeddedin itsassigned
geographicalregion.At thebeginningof thecalculationall observational data relevant for the mini-volumes owned
by a processor are shipped to the processor. After that, processors are almost independent of one another, apart
from exchanges which may arise from the dynamic load-balancing strategy. Besides conceptual simplicity, the main

advantage of this approach is that it minimizes the number of changes which must be made in the original sequential
code, particularly in the routines for construction of covariance matrices and the Cholesky solver. It can also be easily
load balanced. Search for observation data is done within a scan radius which is much larger than the geographical

region assigned to each mini-volume (see Figure 1 in the Appendix). Hence, the major shortcoming of this approach is
due to the existence of overlaps between these search regions. The relative amount of overlap increases as the number
of mini-volumes per processor decreases, thus limiting scalability.

Most of the redundant computations appear in the quality control stage, which is not surprising, given that quality

control really manipulates model and observation arrays and can be naturally expressed as a data parallel algorithm.
It is not easy to predict the overall percentage of time spent in Quality Control for future assimulation systems,

since many more observation attributes may be added and more sophisticated quality control procedures may be
introduced. It is likely that Quality Control will take of the order of a quarter up to a third of the overall CPU time.
This was the initial motivation to develop an experimental data parallel implementation along with the task parallel

production code. While developing the data parallel version using High Performance Fortran as a platform, it became
clear that OI code may serve as an excellent real-life benchmark for both language features and compiler technology.
In the next Section we describe the HPF implementation of the Surface Analysis Module in the OI code.

Given the large granularity of distinct computational phases, the optimal approach to parallelization of a major
production code like OI would be to implement each phase as a module, using the most appropriate paradigm
within each module, and then deal with paradigm integration using either language level support (e.g. EXTRINSIC

mechanism in HPF, Fortran M) or, more preferably, higher level integration environments (like AVS or Khoros, for

example). This is the approach we adopted for parallelization of the Physical-Space Statistical Analysis System
(PSAS), the next generation of the DAO assimilation software.

C. High-Performance Fortan Implementation of the Surface Analysis Module

1. High Performance Fortran Overview

High Performance Fortran (HPF) is derived from the experimental Fortran D langauge [11] with the goal to preserve,
at the application level, two basic tenets of sequential programming: single thread of control and global name space.

HPF language specification is an evolving standard initially adopted in 19_93 as a result of collaboration of academic
institutions and hardware and software vendors. Dialects of HPF have already existed on Connection Machine and

MasPar computers. A number of fully HPF compliant compilers will be[ommercially available in 1996. For a detailed
exposition of HPF design, philosophy and semantics, the reader is refeiffed to [12].

The basic principle of HPF is that parallelism must be explicitly stated by the programmer. For example, the

compiler does not attempt to discover parallelism by a sophisticated dependency analysis of loops, which is an
approach taken by other parallel languages. There are basically three ways a programmer expresses parallelism: array

syntax, parallel constructs and compiler directives. HPF may be considered a superset of Fortran 90 with a small
number of extensions to support effective use of MIMD machines. In both Fortran 90 and HPF arrays are first class

objects. Array syntax allows the programer to manipulate complete arrays and to express parallelism transparently:
since the array elements are distributed among the nodes of a parallel processor, an array instruction is executed

by all nodes simultaneously. Translation between addreses in the global name space and addresses of array elements
in local node memories is done by the system. Also, if the array operation requires that array elements be fetched

from remote node memories, appropriate run-time library calls are generated by the compiler transparently to the

programmer.
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Dataparallelapplicationsarecharacterizedbysequencesof operationswhichareperformedonall membersof a
datastructure.This typeof parallelismcanbeachievedbypartitioningthedatastructureamongthenodesof a
multiprocessor.Nodesmaysharea commonmemoryorhavephysicallydisjointmemoriesorboth.HPFdesigngoal
is to achievemaximumperformanceforanykindof memoryorganization.Non-uniformmemoryaccessonphysically
distributedmemorymachinesimpliesthatdatalocalityiscrucialforgoodperformance.HPFhasanumberoffeatures
designedto exploitdatalocalityto achieveoptimumperformanceacrossdifferenthardwareparameters.Amongthe
mostimportantHPFextensionsto Fortran90arecompilerdirectivesfordatadistributionandalignmentamongthe
nodes,whichconstituteaprogrammer'shigh-leveltoolboxformanagementofdatalayout.Thisshouldbecontrasted
with intricaciesofmicro-managementofdatalayoutinmessage-passingenvironments.

Mappingof dataarraysontotheprocessorarrayis typicallydonein twostages:first,a groupof dataobjects
arealignedamongthemselves,usingALIGN or REALIGN directives; then, the aligned objects are mapped onto an
abstract processor array (as defined by the PROCESSORS directive) using the DISTRIBUTE or REDISTRIBUTE
directives. These steps are under programmer's control. In the final stage, the abstract processor array is mapped in a
system dependant fashion onto the physical hardware, transparently to the application programmer. The fundamental

advantage of this process is that code design is centered around the topology of the physical problem, while the mapping
from the problem topology to the communication hardware topology is done by the system in a (presumably) optimized
fashion.

Possible distribution patterns are: BLOCK, CYCLIC and *. BLOCK distributes an array dimension.in con-
tigous blocks, CYCLIC distributes in a round-robin fashion, while * specifies that the array dimension should not

be distributed. BLOCK is analogous to :NEWS and * corresponds to :SERIAL in CM Fortran.

_. Data Layout

Parallelization of the Quality Control submodule within the Surface Analysis Module is based on one-dimensional

BLOCK decomposition of both model arrays and data arrays. The important model arrays are pressure (P), latitudinal
(U) and longitudinal (V) wind components. These are 2D arrays dimensioned as IM x (JM + 1), where IM is the
number of latitude strips and JM is the number of longitude strips in the discretized latitude/longitude grid.

In the OI algorithm, references to model arrays usually involve clusters of nearby points. For example, model
data have to be interpolated onto the observation locations, which presently requires four points on a grid rectangle

surrounding the observation location. By partitioning model arrays into fixed width strips using template

!HPF$ PROCESSORS pgrid(NUMBEE_OF_PROCESSOP_ ())

!HPF$ DISTRIBUTE (BLOCK,*) ONTO pgrid :-" psl
!HPF$ ALIGN WITH psl :: uwind,vwind

we ensure high degree of locality if the number of grid points per processor is not too small. For a 2.5 deg X2 deg

resolution, IMX(JM + 1) = 144X91 = 10000, which means that decomposition granularity is sufficiently large even
for massively parallel machines. Granularity improves for finer resolutions and for other Analysis modules, such
as Mixing Ratio and Height-Wind Analysis, which use three-dimensional modell arrays. The array extent in the
third dimension is equal to the number of pressure layers, which is of the order of few tens. The two-dimensional

decomposition is therefore efficient for most of the present and future parallel machines. Higher-order interpolation
schemes would also increase efficiency by increasing complexity of local computation.

In the task-parallel implementation, observational data are modeled as one-dimensional array of structures. Struc-

ture fields correspond to the attributes of an observation at a given location. This implementation is elegant and
flexible. Flexibility is quite important, given that new data attributes will be added to the future generation DAS,

which can be easily accomplished by adding new records in the data structure. Since HPF precursors such as CM
Fortran and MasPar Fortran do not support user-defined data types, in our present HPF implementation observa-
tional data are modeled as a standard 2D array. This is a short term solution which allows us maximal portability

on present platforms. The first array dimension lists the observational data and it is distributed in a BLOCK fashion

across available processors. The second array dimension is serialized and it is used to store observation attributes. In
the present version of the assimilation system, there are 10 attributes:latitude, longitude, type...

The storage pattern of the parallel code is different from the storage pattern of the original Cray CFT77 code: in
latter one, observational data are stored as a one dimensional array, where all observation latitudes are stored first,

followed by all longitudes and similarly for other attributes. At various stages of computation, the Cray program
constructs indices into this array, which are used by gather procedures to fetch necessary data. This strategy allows
efficient use of memory banks and vector hardware, but it is unacceptable for a distributed memory where data locality

is of paramount importance. Frequently, several attributes of an observation are needed in a single code segment.

59



Forexample,bothlatitudeandlogitudeareneededto computethedistanceof anobservationfromthecenterof a
mini-volume.Theoriginal storage pattern virtually guarantees that the required attributes would be scattered across
multiple processors. On the other hand, the present observational data decomposition, which is achieved using the

following template:

!HPF TEMPLATE(BLOCK, SERIAL)

guarantees locality of memory references to different attributes of the same observation. The only possibility to reuse

old program arrays would be to enforce a CYCLIC distribution pattern on the original 1D array, but it is easy to
see that it does not work for arbitrary numbers of processors and/or variable size data arrays. Data arrays must be
dynamically allocated for effective partitioning of variable sized data sets.

Quality Control can be roughly divided into Gross Check and Buddy Check phase. During the Gross Check, each
observation is tested against model prediction at the location of the observation. Observation is flagged as suspect
if the difference is larger that the expected observation error multiplied by an empirically adjusted factor of O(1).

The important operation during the Gross Check is interpolation of model pressure and winds onto the observation
locations. It involves non-conforming data and model arrays. For each observation, one has to obtain indices of model

data for the 4 grid points on the grid rectangle which surrounds the observation. With the (BLOCK, SERIAL)
decomposition, computation of indices into the model arrays does not incur any communication costs. Once the

index arrays are computed, FORALL construct must be used to gather model data into 4 arrays which are cdnformal

with the observational data array. The gather phase involves indirection with substantial communication costs. For
example, on machines like CM-5, gather involves router communications which are much costlier than structured

grid communications (NEWS). Communication costs are amortized somewhat by extensive checking of the model
grid data, which increases number of operations on conformal arrays 16 times in comparison with straightforward
interpolation. As a result, the interpolation routine is quite efficient even on a high latency machine like CM-5.

After the interpolations, Gross Check can proceed without any communication overheads, thanks to conformity of
arrays. After completion of Gross Check, suspect observations are flagged and one proceeds with the Buddy Check.
For each suspect observation, one searches a region of 1000km in radius in the vicinity of the suspect point and

identifies observations which passed the Gross Check. Once identified, these observations are used in a successive
correction scheme to improve upon the suspect observation. If this does not help, the observation is discarded for
further analysis. The search is implemented as a sequential loop over suspect observations. Within this loop, the inner

loop over all observational data is parallelized by distributing observational data array. The major communications

overhead comes from broadcasting the information about the suspect point. Another major communication overhead
comes from a global reduction (SUM) on the array which contains weights assigned to each observation data in the
successive corrections scheme. These two overheads reduce the peak FLOP rate from 3.7 GFLOPS on a 256-node
CM-5 to 0.7 GFLOPS sustained. Peak rate is achieved in those parts of the loop body which manipulate observation

data array and arrays conformal with it, i.e. those without communication costs.
This version of the parallel algorithm follows closely the original sequential algorithm. Additional speed-up can

be obtained by redesigning the sequential code. The observational data can be sorted along latitudes and longitudes
before the quality control routines are called. The costs of the parallel sort scale as N/P logN, where N is the number
of items to be sorted and P is the number of processors. After the sort, complexity of buddy check scales as coast X

N, in comparison with the original algorithm which has a complexity of N 2. It is clear that the strategy with sorting

wins on large enough observational data sets. The sort was implemented in the task parallel version, but not yet in
the data parallel version.

After the completion of Quality Control, data parallel algorithm and the original algorithm begin to diverge signif-

icantly. In the sequential code, an analysis driver routine first establishes a loop over mini-volumes. Within the body
of the loop, the following tasks are executed:

1. Search for observations within 1600kin of the center of the mini-volume

2. Selection of observational data which belong to the mini-volume: data are first sorted according to their
proximity to the mini-volume center, their type and their quality. Afterwords, 150 or less data with highest

score determined by a set of semi-empiric criteria are selected. The outcome of the selection process is an index
list into the data array.

3. Construction of correlation matrices: Index lists computed in the previous step are used to gather the chosen
observation data into workspace arrays. These workspace arrays are then used to compute correlation matrices
for the mini-volume.

4. Solution of the linear system: the major step is Cholesky inversion of the correlation matrix. Thge result is a

set of weights for all grid points in a mini-volume.
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5. Store of the computed weights for the mini-volume grid points.

Due to the sequential nature of processing of the mini-volumes, memory requirements are not excessive, since only

the final results, i.e. the computed weights have to be stored. Workspace arrays are reused and overwritten with the
information from the next mini-volume.

Parallelization strategy cannot be centered on parallelizing the inner body of this loop, i.e. parallelization of the

Analysis algorithm for a single mini-volume. There are at least three major reasons why this strategy is unacceptable:

• Indirection into the observational data array would incur high communication costs since data needed for one

• mini-volume analysis are typically spread across many processors.

• A single mini-volume problem is typically too small. Asa result, parallel implementation of the Cholesky solver
would be inefficient and load-imbalanced since mini-volume matrix sizes may range from just a few to a few
hundred.

• Usage of distributed static temporary arrays in the Construction phase would lead to load-imbalance problems
since number of mini-volume data fluctuates . On the other hand, dynamic allocation of workspace arrays for

each mini-volume would incur additional system overhead,

Therefore, our parallelization strategy is to distribute the outermost loop over mini-volumes. As a first §tep, we

separated Search, Selection and Construction phases from the Solution stage and redesigned them to handle arrays
of mini-volume matrices, instead of one matrix at a time.

The main complication of this approach is that intermediate results now have to be stored, which is typical of data

parallel algorithms. All relevant variables in the Analysis stages, including the workspace arrays now acquire another
dimension, corresponding to the mini-volume index. Life is further complicated by the fact that it is not known what
are the sizes of the arrays, since the size of each mini-volume data set is variable and known only at run-time. Given

that large amounts of memory are required in the data pa rallel startegy, this has important consequences for the

design of the parallel algorithm, particularly on machines where virtual memory is not available. This is the case on
the CM-5, which was the original platform for the development of the parallel code.

In the Solution stage the original sequential code runs in an embarrasingly parallel fashion, due to mini-volume

independence. The transition from data parallel to task parallel is effected by the EXTRINSIC mechanism of HPF
or the somewhat similar global/local programming model on the CM-5.

In addition to being able to accomodate the program arrays in memory, in a data parallel implementation one has
to accomodate the temporaries created by the runtime system. Because of that, we divide the whole mini-volume set

into an adjustable number of groups. The parallel program driver processes one group at a time in a sequential loop.

Each group corresponds to a contiguous subset of the mini-volume indices. Using the triplet notation of Fortran 90,
the array sections with relevant mini-volume data are spread across the whole parallel machine.

Before the Search phase, a number of temporary arrays of adjustable size are allocated. These arrays are going to
be used to store data items identified in the Search and Selection phases. They are essential for successful memory

management of the Analysis phase.
In the Search phase, we have a sequential loop over mini-volume indices in a group. Parallelization comes from

distributing the observation data array. Each processor loops independently through the observations it owns to
find out which observations are within 1600km of the mini-voiume's center. These observations are flagged and

their attributes (latitudes, longitudes, type, quality, etc.) are gathered using FORALL construct into previously
allocated temporary arrays. The temporary arrays essentially act like stacks. The data from the next mini-volume
are concatinated to the data from previous mini-volumes, ile. they are pushed onto the stack. If the stack size is

exceeded, the search records the mini-volume index that caused stack overflow and the rest of the Analysis is done
on the mini-volumes which fit into the stack size. Once the Analysis is finished, all stacks are cleared and the Search

begins anew with the mini-volume that caused stack overflow. This procedure guarantees that there will always be
sufficient memory regardless of the number of observations in a mini-volume. In case of an upward fluctuation in
the number of observations in a mini-volume group, the worst that will happen is that fewer mini-volumes will be

processed at a time.
The stacks are passed to the Selection routines. Along with stack arrays, the Selection routines receive a mini-

volume map array which identifies the mini-volume indices associated with data items listed in the stack arrays. The

map array is conformal with stack arrays and is also dynamically allocated. For example, the stack elements which
belong to mini-volume number M will have number M written in the conformal segment of the map array. There

are multiple stack arrays which list latitudes, longitudes, data types etc. First we use segmented bitonic sort to
rearrange data lists for each mini-volume in increasing distance order from the mini-volume center. The sequential
code uses heap sort, but it was easier to parallelize the bitonic sort. The performance of any segmented sort depends
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on theprocessornumberanddistributionof themini-volumedatasetsizesin a complicatedfashion.In theworst
hypotheticalcase,it canhappenthat asinglelargedatasetfromonemini-volumeisplacedonasingleprocessor,
whileall otherprocessorshaveevenlydistributedmuchsmallermini-volumedatasets.Then,althoughthenumber
ofdataisequalonallprocessors,duetothepeculiarsegmentsizedistribution,thesortisseverelyimbalanced.Since
weexperimentedwith a singledatasetonly,it wasdifficultto seehowmuchof theproblemthis wouldbe in a
typicalanalysisrun. Sincethereisan imbalancein geographicobservationdatadistribution,onewouldexpectto
havesignificantloadimbalancesin typicalsortingprocedure.Weplanto experimentwithastatisticalcure,where
mini-volumeindicesarerehashedin a random fashion.

The sorted data are searched to pick highest quality data of given types. These searches are done on the stack
arrays with use of the mini-volume map array. The central operation here is counting and gathering of selected data
into their permanent. Counting is achieved by first flagging the chosen data by 1 against the discarded data which are

flagged by 0, and then using the FORALL construct with the SUM intrinsic in the body of FORALL. The procedure
can be thought of as the segmented scan operation.

Again, FORALL is used to gather the selected data into their permanent storage. Since up to 150 data items

are kept for each mini-volume, once the selection of data is completed, memory requirements are more predictable.
Furthermore, many more data can be identified within a mini-volume during the Search routine then the maximum

number of selected data. Therefore, the permanent storage is in_plemented as dynamically allocated 2D arrays with
mini-volume index in one dimension and the list of data for a given mini-volume in the other dimension (Ul_ to 150

of them). Dynamic allocation is essential again because it is known only at run-time which mini-volumes in a group
will fit into the stack size.

Parallelization of the Construction stage is achieved by distributing the mini-volume index dimension across available
processors. Again, the simple decomposition over mini-volumes may lead to significant load imbalances. We plan to
apply first the rehashing procedure to the mini-volumes as a statistical cure for load imbalance. Another approach

would be to go to the EXTRINSIC procedure immediately and treat both Construction and Solution phase as task
parallel. Then, simple load balancing procedures using explicit message passing can be designed, as described in the
Section on task parallel implementation.

The goal of the data parallel implementation was not do design an optimized and fully integrated Analysis system.
We wanted to experiment with an emerging data parallel language, High-Performance Fortran and explore benefits
and limitations of data parallel syntax for a complex code with non-conformant data structures, non-uniform memory

requirements and even computational paradigm. It was also very important to asses the benfits of code development
in HPF, given that Fortran 90 is becoming the standard development platform at DAO for future assimilation systems.

The results are quite encouraging, although the present generation of compilers are still not up to the demands of this
code. The code could be compiled within a reasonable amount of time and run with acceptable performance only under

CM Fortran. This is the most mature HPF-like compiler, but it is also much more restrictive than ful HPF. Extensive

benchmarking is therefore left for future work. What is quite important is that majority of computations can be
naturally mapped onto the array syntax anad array constructs of Fortran 90. FORALL construct, global reductions
and scans are also extremely useful. Of course, parallel programming would not be possible without dynamic memory

allocation. We believe that a set of utilities for segmented sorting, searching and counting would be beneficial not only

for this code, but for a large number of applications. Finally, our load balancing problems would be realitevly easy to
solve if we had a more flexible partitioning scheme as a part of the language. This is hopefully something that HPF II
will implement. DO INDEPENDENT would simplify a number of tasks that are now implemented using FORALL or

WHERE if possible, Unfortanately, it is not properly supported by present compilers. With flexible partitioning and
DO INDEPENDENT capable of handling subroutine calls, we could implement the complete load-balanced Solution
phase without resorting to the EXTRINSIC mechanism.
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Appendix 1- 1

Appendix 1: Metacomputing and GEOS
DAS-1 As;similation System
Here the parallelization of an optimal interpolation algorithm is described as used in Four Dimensional Data
Assimilation. The project has been conducted interdisciplinary at Syracuse University and NASA God-
dard Space Flight Center. Combining the expertise in High Performance Computing by NPAC at Syracuse
University and the expertise in atmospheric science by DAO provided a unique research environment.
Since the original algorithm is very complex a considerable amount of time was spend to ease the parallelization
process. A parallel vector library in conjunction with a graphical user interface makes the definition of the
parallel algorithm much more simple. The resulting program can be executed on top of the message passing
library MPI. Experiments are conducted on an IBM SP2 distributed memory computer.
First, a small introduction to data assimilation and it's relationship to climate modeling and weather fore-
casting is given. A simplistic mathematical model is introduced to outline the major components of the 69000

line long optimal interpolation.
After being familiarized with the logic of the program, software engineering aspects are summarized which
influence the strategy used for the parallelelization of the original sequential algorithm.
Next, a graphical software environment is described which is used to specify the parallel algorithm. The
environment enables to specify parallel programs as process task graphs which are than mapped onto the

parallel machine. During the execution of the program the resources of the parallel machine are monitored
and dynamic load balancing is used to keep all parts of the machine as busy as possible.
In the last section results of experiments, conducted on a SP2, are given. Presented are results for two
different versions of the OI code. The code uses data and task parallelism where appropriate. The final

version of the algorithm scales very well with the number of processors. Suggestions for further improvement

of the algorithm are given.

1 Climate Modeling and Data Assimilation

The precise prediction of weather and climate is an essential part of our daily life. The knowledge of future
weather and climate conditions are used in decision processes of quite different scale. For example, while it
is essential for a traveler to know the weather conditions of the place of destination for the current day or

week, it is also important to know the climatological conditions in order to chose the appropriate season to
start out a journey. Other important examples are the occurrence of smog and the influence of pollution on
the climate of the earth.
Providing a precise forecast enables to determine proper preventive actions governed by the future atmospheric
condition. Weather and climate models provide the opportunity to study these effects at different scales.

Figure 1 displays the space and time scale phenomena of the earth climate system[4]. The region of interest
ranges from about 10km to 36000km, the radius of the earth. The time scale of interest ranges from a few
hours to month, years, and for long running C02 analysis even longer.
Unfortunately, the atmosphere is the most variable component of an earth climate system. Elaborate models

are necessary to describe the atmosphere[16, 17].
Not only do climate models contain complicated equations but perform its calculation on huge data sets.
Thus, computers with enormous computational power are needed to calculate a prediction of only small
complexity. Therefore, climate modeling is classified as one of the grand challenge problems. To motivate the
role of data assimilation in relation ship to climate modeling a more detailed look into the field of meteorology

is necessary.
The main problem in meteorology is how to obtain a valid forecast. Already, early in the development of the
science of meteorology three steps are distinguished:

1. The (initial) state of the earth has to be determined.

2. Laws which predict the new state have to be determined.

3. The forecast is obtained while applying the Laws to the initial state.
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Figure 1: Space and time scales of an earth climate system

The three parts have a direct influence on each other. Without a precise initial state the forecast will be

unreliable. In addition the governing equations describing the atmosphere should be as accurate as possible.
Last but not least the application of a mathematical evaluation process of the governing equations applied to

the initial conditions should introduce only a small error.

In the ground breaking publication by Richardson[12], a finite difference form is used to integrate forward in

time, obtaining a forecast from an initial state. He used an initial state as published in [2]. The difference

scheme is applied on a regular latitude-longitude grid of fixed size.

Different variables are used to describe the governing equations, e.g. pressure, height, the three components

of the wind (often abbreviated as u-, v-, and z-component), and many more. Since these variables are defined
for the whole domain, the term field is used for an array of variables of the same type.

Unfortunately, the initial data in Richardsons calculation did not define the values of the fields at all grid

points of the domain (in today's forecast systems this is still the case). The forward integration can only
be achieved after values for the fields have been defined. To quantify this problem, a typical distribution of

observations is shown in Figure 2. A schematic closeup is shown in Figure 3. The question that arises, is

how are the initial values for the computational grid determined?
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Figure 2: Typical distribution of observations for the determination of an initial state

Optimal Interpolation

Many possible solutions for obtaining the initial values have been introduced in literature. One of the most

successful and still used methods, is the technique of optimal interpolation. It was introduced by Eliassen[5]

and Gandin[6]. It uses a statistical process based on mean square minimization to obtain the missing values
for the computational grid. The idea behind optimal interpolation is to take a first guess for the fields and

observation. Then, for each gridpoint, actual observations are used in order to obtain an analysis increment

based on the weighted sum of all observations in the vicinity of the point.
In order to obtain the first guess fields at the grid points, the model is integrated once forward in time. The

first guess observations are determined by a interpolation step from the fields towards the actual observation
locations.

In practice, a cut-off distance is used allowing only observations up to a fixed distance to be used for the

update. This is shown schematically on the right side of Figure 3 (this strategy will be described in more

detail later).
First, a simplified mathematical formulation of the optimal interpolation algorithm is given. This description
follows the univariant case, which has the property that no correlation exists between the variables of one

field and another. Let,

Ng be the number of observations, affecting a particular grid point g,

A s be the resulting analysis at gridpoint g,

Fg be the first guess value at the gridpoint g,

Fi be the first guess value for the i th observation,

Oi be the i th observed value, and

Wgl be the yet undetermined weight function.
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Let ( ) denote the statistical averaging process, and let (,gA (,gA)T)_(,g(,g)_ T)A..

Then, the optimal interpolation algorithm can be derived as follows:

Ns

Ag = r z + _ Wsi(Oi - Vl) (i)
|=I

Where Ag- Fg specifiesthe analysisincrement or correction,and Or-Fi specifiesthe observationincrement
or innovation.

Transforming Equation (1)in terms oferrorsyieldsto

Ns

A F+_wo(_o_,r) (21
|;1

Then,

('g('g)T) A (3)

can be minimized with respect to the weights,

0 T A

0-w-(,,(,,) ) = 0 (4)

Ng

(,,_T)F=_ wg,(<,,_?)F+(_,,?>°) (_)
|--1

In the Equation (5), correlations between the observations and the first guess errors are neglected. The errors
are assumed to be uncorrelated and unbiased.

To complete the calculation, it is assumed that the forecast error covariances from the previous equation can

be estimated by an empirical fit.

In the univariate case, the model and observed error correlation can be approximated as follows:

(Q_)F F F-Fo"i crj oij

(,,,?-)% o z oCo-) p_j
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where J and p are functionals dependent on the observation positions, their difference, and the pressure. 1
T F

In the same way, let (egej) , be approximated by

Then, we obtain in a final form

,, . (6)
b A

One can now solve this system of linear equations for each grid point in order to obtain the missing weights.

= b (7)
As mentioned earlier, the optimal interpolation process can- also be used to allow observations of one kind

of variable to influence the analysis of another one. This process is known as multivariate analysis. -In

the multivariate case, the correlation terms and the weights in the Equation (5) become matrices instead of
vectors.

For a complete derivation of a multivariate optimal interpolation algorithm we refer to [4]. The parameter
set used in the operational OI algorithm is described in [10].

Quality Control

Besides the use of the optimal interpolation strategy, the quality of the actual observation used to perform
the analysis is of upmost importance.

A network of various observation instruments is used to gather data about the atmospheric condition. Un-

fortunately, a measurement taken by an instrument will contain errors. These errors have to be corrected.

Examples of different instruments are given below. They are categorized in three instrument classes.

Instruments of class 1, measure observations taken at a single point. Common examples of such instruments

are thermometers, and devices measuring humidity. Class 1 instruments can even be placed in radiosonds to

measure values at different height or pressure levels.

Instruments of class 2, sample an area or volume rather than an observation point. Common examples are

radar measuring precipitation and winds via Doppler shift.

Class 3 instruments determine wind velocities from Lagrangian trajectories. Here, a physical target is followed
remotely and the velocities are determined with the help of the displacement of the target. Examples for

such instruments are radiosond balloons, but also cloud elements tracked with pattern recognition techniques

from geostationary satellites.

Each of the instruments have different characteristics introducing errors into the observed value or variable.

The characteristics are predetermined, and on average, known for each instrument type. They are an im-

portant input in the actual data analysis, in order to eliminate errors leading to big variations of the actual

atmospheric state. Therefore, it is necessary to check the input data and correct or reject erroneous data

from the analysis. Certain errors can be corrected quite simply leading to an overall improved quality of the

analysis.

Operational Optimal Interpolation Algorithm

In this section, the specific details applying to the operational Optimal Interpolation Algorithm, as run at the

NASA Data Assimilation Office (DAO), at Goddard Space Flight Center (GSFC), are described.

The NASA Four Dimensional Data Assimilation System is based on independent program modules (shown in

Figure 4). First, data observed by satellites, weather balloons, airplanes, and other sources are prepared for

input. A quality control check is performed to eliminate wrong or erroneous data. After the quality control,
the model calculation is performed[ll]. A general circulation model (GCM) - henceforth called the model-

is used to generate a six hour forecast. The objective analysis - henceforth called the analysis - then involves

1 An exact specification of these complex functions and their derivation can be found in [10, 4, 1].
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use of statistical weights to combine the model grid-point data and the observations to obtain a best estimate
for the state of the atmosphere.
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Figure 4: Overview of the Integrated NASA Goddard Data Assimilation System.

At the DAO, different strategies for the analysis are in use, as well as in development. For example a

multivariate optimal interpolation algorithm[14, 1, 4], a global analysis algorithm, called the Physical-space

Statistical Analysis System (PSAS)[15, 8], and the Kalman Filter[3, 9], are among the data assimilation
strategies.

Even though the functional decomposition of the Goddard assimilation system (i.e. model forecast followed
by analysis) may permit that different modules are executed on different machines. For the reminder of the

report we assume that the different parts are executed on the same machine.

The analysis incorporates a variety of observations such as rawinsond reports, surface ship observations,

and satellite retrievals. At present, one six hourly analysis incorporates approximately 100,000 observations.

In ten years the number of observations is expected to increase in at least two orders of magnitude. Data
are interpolated from non-uniform locations to a regular grid via the multivariate optimum interpolation
(OI) analysis technique as introduced before[ll]. The OI algorithm uses statistical estimates to determine

appropriate relative weighting between noisy observations and a somewhat inaccurate first guess which is

obtained with a forecast by the model. This is done in order to minimize the resulting error in the analysis.
The analysis cycle consists of performing

1. the initialization,

2. the model forecast, and

3. the data analysis.

These steps are iterated for every 6 hour interval as shown in Figure 5.

The most important difference between the optimal interpolation algorithm specified in section 1 and the

operational system is the use of so called mini-volumes. In the original formulation of the algorithm the
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Figure 5: Data Assimilation Cycle

covariance matrices are computed for each grid point. Since the difference in the covariance matrices of one

grid point and a neighboring gridpoints is rather small, the covariance matrices are determined for a group of

grid points, laying in a small latitude-longitude-height box. Hence the term mini-volume optimal interpolation

algorithm is used to describe this algorithm. The introduction of mini-volumes increases the calculation speed

drastically but reduces slightly the quality of the solution in contrast to the original algorithm.

Parallel computing will allow to eliminate the mini-volume concept and perform the optimal interpolation on

each grid point dependent on the computational resources available.
An important issue in climate modeling is the resolution as used in the grid representation. Is the grid

dimensioned wrong, an error based on its representation is introduced, called error of representatives. If the

scaIe of the grid is to big effects such as the well known lake effect snow in Syracuse would not be detected.
Therefore it is desirable to have a model which contains a high number of grid points in a volume over the

earth. It can be concluded that grids with big gaps between the gridpoints introduce a high error in the
calculation. On the other hand the calculation performed on a computer will be much less time consuming.

The resolution of the grid can be chosen arbitrarily in the production code. Usually resolutions of 2x2.5x20,

2x2.5x46, or 4x5x20 are used.
Furthermore, the actual data assimilation procedure is split in three separate modules. Differentiated are

the surface-level-pressure analysis(SLP), the moisture-vapor analysis(MIX) and the height-u-wind-v-wind

analysis(HUV). The logical structure of the separate parts are similar. They distinguish each other through

different parameters and equations describing the atmospheric condition, which is analyzed in each part. For
simplicity we describe the functionality of the algorithm on an abstract level, code.

The following high level program segment describes the program flow of the quality control of the observation
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data.

I proe Quality Control
Read in the observations.

s Ignore all observation with invalid
4 locations.

5 Obtain the first guess values at the
6 location of the observations.

7 Interpolate the forecast errors to
s the observation locations.

9 cal_._!lGross Check.

1o cal__ll Buddy Check'.

11 end proe

In line 9 and 10 interpolation algorithms are used to obtain the appropriate values at the location of the

observation. Presently the quality control algorithm consists of two further steps: the gross-check and the
buddy-check.

The gross-check, eliminates obvious errors, dependent only on the values at the location of the observation
and performs a test based on the observation and forecast error variances:

> Th((, o)2 + (8)

where, g is the difference between an observation and the interpolated background first guess value, and Th

is a subjectively defined tolerance value varying with height. The high level code of the gross check looks as
follows:

I Th := Tolerance

s oroe Gross Check

4 foreach observation E this processor

i_f pressure is in valid range

8 the.__..nnobservation is valid
fi

s i_f observation is still valid

9 the__...nn
lo ti = variable ° - variable F

l if suspect
l_ then fail

is else if$ 2 > Ta((_r°) 2 + (aF) 2)
14 then fail

J6 fi

17 end foreach

Is end proc

The buddy-check, eliminates errors which depend on all the values of all the observations in the vicinity
of the location. A successive-correction method performs the analysis at each location which is marked as

suspicious observation. Than, the difference between the analyzed value and $ are subjected to Equation (8).
The observation is accepted if Equation (8) is not satisfied[14].
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I _ Buddy Check
2 fo___reach valid observation 6 this processor

Search the observations in a particular

5 radius surrounding the data point.

7 |_f data is in tolerance level

s then reaccept
9 fi

11 end foreach

J_ end proc

After the quality control is conducted the optimum interpolation algorithm is applied and the matrices, as

given in Equation 7, are solved as follows:

I proc Solve

2 foreac__hh Mini-volume 6 this processor
s Collect the data for this mini-volume

foreaeh Vertical level
s Calculate covariance matrix.A

6 Solve the linear equation.4z = b
7 Store the result

s end f.oreach

g end foreach

Io end rp_r_o__q

New valuesfor the fieldsare stored and the algorithm isterminatedwhen the equationsforallminivolumes

have been solved.The optimal interpolationisat thispoint completed.

The resultingfieldswillused as input to a predictionalgorithmto determin the next stateofthe variables.

2 Software Engineering Aspects

While parallelizing the existing code the following project limitations had to be fulfilled: First, the program

should run on as many MIMD machines as possible. Second, the language in which the mathematical
computations are performed is Fortran as a natural extension of the present code and due to its performance

advantage over other languages.

One major practical problem in the parallelization was the internal structure and software quality of the

existing code. The program is written in Fortran and designed for a specific vector supercomputer. Because

of its long development time and the large number of programmers involved in its development it is very

complex and can be concidered as legacy code.

Unfortunately, the code does not pass the ANSI Fortran 77 standard. Therefore, it was necessary to use

Fortran 90 as programming language of choice. This has the advantage that vector arithmetic operations
which are part of the Fortran 90 programming language could be used in order to increase the readability of

the program.

Another major problem was the development stage of the sequantial code. The first version of the code was

buggy and while porting the sequential code with parallel extensions on different MIMD machines many bugs

in the original program could be revealed. At first we tried to reimplement major parts of the algorithm in
Fortran 90, but had to stop this effort because of time limitations bound to the project.

A further problem with the old version was the data input and output, which were based on ASCII file IO.

Also the IO routines in the quality control were different from the production code.

The time spend in the parallelization of the code was only I0% of the total programming time, while the rest

of the time was spend in optimizing the sequential code.

As result of this optimization the execution time of the sequential code could be improved by 50%. This shows

once more that eliminating or improving inefficient code in a sequential algorithm can drastically improve

the runtime. For a parallel code this meant also that the program could run on half of the processors using
the same wall clock time.
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In a separate effort, at NASA GSFC, a new version of the code was in development. This version of tile
code eliminated the known bugs in the previous version. The quality of the output and the execution could

be improved, while incooperating parts of the changes done to the first version during it's parallelization.

In addition, the matrix solve routines have been replaced by a matrix solver which is available in optimized

form for the used hardware platforms.

Due to the availability of the new version, which behaved much more stable and had increased performance,
we decided at the end of November 95 to abandon the code development of the version 1.2. Instead we took

the new version and iacooperated changes to parallelize the code.
Nevertheless, we would like to point out that the new sequential code can still be improved by another 30%

based on the inefficiencies we discovered in the previous version.

Before, performance results are given the software engineering aspects of the code development are summer-
ized.

Software Engineering Implications

The parallelization of the existing program is a difficult task. In order to minimize the parMlelization effort'we

developed a strategy to transform the optimal interpolation algorithm gradually into a parallel program[19].

To be portable on the next generation of MIMD supercomputers, only widely supported programming lan-

guages and tools are used. The choice of programming languages and software tools are based on their
availability, their ease of use, their flexibility, and their standardization.

Fortran 90 and HPF: For the computational core of the main program Fortran 90 is used. In addition
it will be possible to transfer major parts of the Fortran 90 OI program to HPF once the compilers are more
stable.

C/C-t--I-: For some of our load balancing and data redistribution tools C/C++ is used, because data ab-
straction and the development of software libraries are easier in an object oriented programming language.

We believe that the incorporation of mathematical data structures in the language (as suggested by the ANSI

C++ committee) will enable easier combination of Fortran and C++. For the parallel algorithm no perform-

ance loss is expected. This is due to the fact that the C/C++ routines are only used for intercommunication

procedures. Interfaces to Fortran are provided. Nevertheless, most of the libraries exist also in a Fortran90

to fulfill the requirement of a pure Fortran program.

£APACK: Where possible the LAPACK and BLAS libraries are used because for a particular machine

fast optimized versions of the libraries exist. This boosts the performance of the algorithm drastically.

Message Passing: As intercommunication Library the standard Message Passing Interface MPI is used.

The routines used for message passing are chosen to be as simple as possible so that a replacement of the

underlying message passing library is easy. Therefore, a port to PVM is easily possible while replacing the

elementary message passing calls. Due to the design and extensions of the used message passing libraries the

usage of heterogeneous computing environments is also possible. MPI will provide an efficient interface to

supercomputers.

Portability: Due to the designed strategy, introduced here, a highly portable program can be designed

running on the current and next generation of supercomputers.

Code Development: In addition, a Graphical Software Environment is used to simplify and support the

parallel code development.
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3 Graphical Software Environment

The experience gained from parallelizing the first version of the code and the interaction with the atmospheric

scientist reviled, that there is a need to simplify the parallelization of the OI code and other codes in atmo-

spheric science. Therefore, a visual software environment is developed to ease the process of new sequential

and parallel program development[7]. The programming environment forces the programmer to use a more
strict and regulated method of programming making the code ultimately more easy to maintain and avoid

problems existing in ega_y codes. The environment allows one to specify a parallel program in a visual graph
editor and fill in the details in an arbitrary programming language, which in turn are than compilabled on a

set of specified the target machines.
This environmnet is not only useful for the development of the parallel OI code, but also for the development

of many other parallel programs. Several steps for the development of a parallel program are distinguished:

1. Designing of the global program structure, keeping in mind the parallel nature of the problem.

2. Specifying the functionality of the blocks which build the global program structure.

3. Conversion of program blocks which are of concurrent nature into parallel blocks.

4. Mapping the parallel and sequential blocks on a real architecture.

5. Running the parallel program and observing performance statistics.

In Figures 6- 9 snapshots of the software environment are displayed, as used for the parallel optimal inter-

polation code.

I[
iJ

File Edit View Help

v?

vO

vm

v×

iv%

ivC D

init

ouiput

Figure 6: The window shows the building blocks used in the global program structure
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Figure 7: The window shows how the program is represented after the parallel program blocks have
been introduced.

Figure 6 shows the logical devision of the program. Data is generally shown in rectangles while processes

working with on data are displayed in circles. Dependencies between data and processes are displayed with

the help of bidirectional edges. For better visualization colors are used in addition to the obvious form
distinction.

Once the processes with concurrent nature are defined, they are introduced into the process graph as shown

in Figure 7. A parallel process is visualized with multiple circles while data distributed in exclusive way is

visualized with multiple rectangles. An example for such distributed data is the block distribution as known
from HPF.

After the processes are defined, they have to be mapped onto a real computer to be executed. Restrictions

during the code development, .e.g. the code can only be compiled on one machine and is not portable, may
limit the number of choices for the mapping. To minimize the overall wallclock time of the program execution

dynamic load balancing can be used to map the problem on the different processors and/or computers based
on their current load.

To support this strategy, a process monitor keeps track of the status and ussage of the machines. Figure 9
shows an example of some system variables _ monitored to support the mapping strategy.

The load monitor helps also to display performance bottlenecks of the parallel program during its execution

on the hardware, while collecting a time space diagram.
In the example depicted, all processes are mapped to an SP2 and a SPARC workstation. In case the processes

are written in a portable way, mapping onto other machines is possible too. This way one can execute a
parallel program in a heterogeneous supercomputing environment.

2here CPU Load, Load Average, and Swap Load
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The implementation of the parallel software environment is done in TCL/TK, C++ and Perl. Because of
the complexity of the program we convert the program currently to Java. This has also the advantage that a

virtual supercomputer programming environment can be integrated in an environment accessible via Internet.

Figure 10 shows the hierarchy of the different parts of the software environment. The first layer is the

communications library, which provides an interface to MPI. On top of MPI a Parallel Vector Library
provides parallel vector routines necessary for the parallel OI or similar codes. In addition it includes some

parallel sorting algorithms.
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Figure 8: The window shows the selection of the machines participatin 9 in the execution of the
program
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The window shows the load meter to control dynamic load balancing while executing the
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Figure lO: Hierarchical overview of the parallel programming environment and the relationship to

the sequential and parallel program
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4 The Parallel Vector Library

In this section the a parallel vector library is described as used in part of the parallel optimal interpolation

algorithm. Its functionality is similar to block distributed vectors as known in High Performance Fortran and

Fortran D. To assure maximal portability on all significant MIMD supercomputers the underlying message

passing library is MPI.
Elaborate Fortran 90 interfaces exist in order to eliminate the usage of different names for procedures and

functions having elementary data types, like integer real, double precession, and logical, as parameters. An

experimental parallel IO library is in development but is currently unsupported.

The library enables to execute simple vector constructs concurrently on a parallel computer. Similar concepts

exists for SIMD and MIMD machines with the help of High Performance Fortran. Unfortunately, the compilers

are not yet stable enough to just use HPF. Therefore, we developed all necessary parallel constructs for this

particular application in the hope that more stable compilers are available in the next years.

The requirements towards the design of the vector library are

* a simple interface,

• an easy extension of the library, and

• maximum portability on as many supercomputers as possible.

To ensure the requirements the runtime library for parallel vectors is written entirely in FORTRAN 90 and

uses MPI as underlying message passing library. The portability is guaranteed while using MPI and the

ease of use is guaranteed while providing the extensive set of interface routines to the core algorithms and

different data types.
It is intended to extend the library on an as need basis. This includes also the introduction of irregular

distributed arrays. Irregular distributed arrays are arrays which are not distributed equally between the
processors, allowing to make use of heterogeneous computing platforms. Overall, the library simplifies

• the design of parallel programs,

• the switch to use High Performance Fortran

• the substitution of the basic constructs with custom designed once (e.g. regular vs. irregular arrays).

I real, parallel array, regular :: a
real, total, mean

s PA_ALLOCATE a(30)
a=10

5 (total,mean) = PA_MEAN(a)

write (6,*) mean, total
7 PA_DEALLOCATE a

Figure 11: Example program to demonstrate the usage of the parallel vector library

A simple example shown in Figure I1, illustrates how to use some elementary constructs of the library. The

program calculates the mean value of a parallel array. It should be noted that the code does not contain a

single message passing routine, making the functionality of the program more transparent.

In the first line a parallel array is declared. The size of the array can be set dynamically during runtime.

In the example, the allocation of the array of total size 30 is done in line 3. This 30 memory locations are

distributed evenly over the number of processors. In the line 4 a simple assignment is used to indicate that

all elements of the array are initialized with the value 10.

In the line 5 two values are assigned simultaneously while executing the function calculating the mean value.

In order to calculate the mean value the sum of all the array elements is produced as a side effect, because
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DECLARATION of a parallel array of type real, integer, or logical.

• real , parallel array, regular :: a

• integer, parallel array, regular :: a

• logical, parallel array, regular :: a

ALLOCATION of a parallel array of size n

• PA_ALLOCATE a(n)

DEALLOCATION of a parallel array

• PA_DEALLOCATE a

REDUCTION operators of a parallel array. E.g. sum, mean, and standard deviation of
its elements.

• sum = PA_SUM(a)

• (sum,mean) = PA_MEAN(a)

• (sum,mean,std) = PA.STD(a)

VECTOR operations are implicit due to Fortran90 semantics. E.g. Assignment, Addition,
Subtraction, Multiplication

• c--10, c--a+b, c-a-b, c--a*b

SORTING, RANKING, and REORDERING sorts an array and returns an index

rank. Reorders are possible with the ranking returned by the sort routine.

• real, parallel array, regular :: values,
sorted, reordered, unsorted

• integer, parallel array, regular :: index

• (sorted,index) = PA_SORT(values)

• reordered = unsorted[index]

Figure 12: A summary of some simple commands available in the parallel vector library.

they are often needed together. In total the total sum of all the values in the array a will be stored, while the

mean value will be stored in the variable mean. Both variables are declared at the beginning of the program

and are of data type real. Once the calculation is performed it is desirable to eliminate the space occupied

by the parallel array to free it for other usage. Therefore, a deallocation statement is used in the last line to

free the memory space allocated with the parallel array.

Command Summary

An overview of some of the parallel vector routines is given in Figure 12. Information about the type , the

usage, and the semantics of the operations is displayed. To simplify some the notation of local loops, the

FORALL construct is supported(Figure 13). In order to apply a FORALL loop on a data structure dependent

on a parallel array, the PA_FORALL construct can be used.

The Fortran code using the parallel vector library is translated by a source to source code compiler. The

compiler can produce sequential code, HPF code, or, as used for our experiments, code using Fortran 90 with

message passing extensions. This leads to an easy way of defining parallel programs using vectors, as used

by the optimal interpolation algorithm where observations are distributed over several processors.

Code Reduction and maintenance

There is only little difference between the vector library of one elementary data type to another. Therefore,

the code for the data types is automatically created with the help of templates similar to C++. The internal
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representation of the templates is done in m4, a familiar macro processor, and nuweb, a literate programming
preprocessor. The templates used for different data types are expanded at compile time and providing a

library which is only 1/4th the size, which would be necessary if no templates are used. This reduces the
cost of maintenance drastically. Due to the usefulness this concept it would be useful to expand HPF with

templates.

5 Results

Results presented here are split in two parts, because the operational optimal interpolation algorithm has

been updated recently from version 1.2 to the version 2.0.

First, results for the parallelization of version 1.2s are shown. Findings obtained during the parallelization
of the version 1.2s have a direct impact on the parallelization strategy used in the version 2.0my of the OI

code, reducing the software engineering effort drastically.

Both versions are applied on a problem instance defined by. a 4 by 5 degree latitude-longitude grid with 14

height levels, resulting in a domain of 144 x 75 x 14 grid points. About 15000 mini-volumes divide the grid

points in small subregions. The total amount of observations is approximately 90000.

Most of the experiments are conducted on a SP2 with up to 40 nodes. The computational nodes are based

on the IBM RISC System/6000 chip set. The actual model is a 390 with 66.7 MHz clock, also known as

thin node (66). The processor is also referred to as Power _. The internal characteristics are a 64 KByte

data cache, a 32 KByte instruction cache, and a microchannel bus performing at 80 Mbytes/sec. The main

memory contains currently 256 Mbytes. An external disk of 1.0GB is available for each node.

Initially, it was important to demonstrate that a parallelization of the algorithm is at all possible. Due to

the programming style used in the original algorithm a considerable amount of time was spend to port the
sequential code to other platforms. Currently, the code conforms Fortran 90 ANSI standard and will run on

a Cray Y/MP, a Cray 090, DEC Alpha Workstations, and IBM RISC Systems 6000. The later one are of
upmost importance because state of the art systems with up to 255 nodes will be accessible for the project.

Version 1.2

Because of the complexity of the original code and the limited resources available to parallelize and modify the

sequential code, it was clear that a simple approach for the parallelization had to be chosen, instead of a more

time consuming reengeneering approach. The sequential parts of the program should be kept unchanged as

much as possible, while adding message passing routines at the appropriate places to parallelize the program.

FORALL loops for local arrays

real a(n,m,l)

FORALL (i=l:nLi=i:m,l=l:l)

a(iLi,l) = calculation

END FORALL

PA..FORALL loops for parallel arrays

real , parallel array, regular :: a

FORALL (i=l:n)

a(i) = calculation(i)

END FORALL

Figure 13: Additional Syntactical simplifications
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FortraugO -_ PA _IB

Figure 14: The relationship between the parallel array library and different parallel programming

paradigm/languages.

Analysis of the Sequential Program

An analysis of the sequential program was used to indicate hot spots in the algorithm. Parallelizing the

program at its hot spots lead to a good overall performance. The computational intense parts of the program

are the HUV quality control with about 40% and the HUV matrix solve with about 48% of the overall

computation time (See Figure 26).

The sequential analysis of the original program reviled many opportunities to speedup the program. While
optimizing the sequential program we could improve the overall performance by about 40%, resulting in 2400

seconds for the overall runtime of the sequential algorithm. Performance improvements are mainly based on

modifications of the quality control algorithm. Here a new algorithm to collect the observations in the region

of influence was used. The algorithm is based on a range search algorithm. First, the observations are sorted

in latitude direction. Then, the search for observations can be aborted once a particular observation with a

latitude distance, defined by the search radius, is reached. Therefore, the search routine does not check all

observations but only those placed in a 20 degree latitude band around he original observation (based on the

1600km radius).

The Parallel Program

To parallelize the given algorithm efficiently, a data parallel and task parallel approach is used in conjunction.
Data objects essential for the parallelization are

• the model data specified by the longitude-latitude grid,

• the observations,

• and the mini-volumes dividing the grid in small subregions.

A careful analysis of the optimal interpolation algorithm reveals that mini-volumes and observations can be

used to develop a task parallel algorithm. On the matrix solve level, mini-volume divide the mathematical

core calculation, naturally in small independent functional units.
In contrast to the matrix solve, the main iteration of the quality control takes place over the observations.

They build the foundation for a natural functional division of the quality control.

The parallel formulation of the algorithm using a task parallel approach is therefore quite simple and intro-

duced in the high level algorithmic description in Section 1.
The conditions E this processor in line 4 of the gross-check, in line 2 of the buddy check, and 2 of the matrix

solve control the parallel execution of the computational block in a particular processor.

Unfortunately, observations from other processors and are necessary to perform the calculation specified in

the parallel loop bodies. The data is irregular of nature, thus complicating the parallelization.

Under the assumption that the data used in the bodies can be predetermined, it is best to prefetch them in

order to avoid expensive communication routines during the execution of the loop.

Dependent on the data distribution different strategies for prefetching the data exists. For the version 1.2s a

striped and a data balanced distribution are used. Then, prefetching is based on obtaining all observations

in a small border stripe of the neighboring processors.
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Striped Decomposition

First, the stripped data distribution is considered. In HPF this distribution is also known as block distribution.

Here the term striped decomposition is preferred because the block distribution is done in one dimension,

and each processor is assigned an equal sized latitude band (stripe).

In contrast to the simple block distribution, known from HPF, a ghostpoint area must be defined to incor-

porate data from neighboring processors. Introducing, perfetching of data contained in a ghostpoint region

has the advantage to avoid costly communication during the calculation. The size of the overlap region is
determined by the radius of the mini-volumes. In the current operational system the radius is 1600km leading

to an overlap region of 10 degrees in latitude direction. Figure 15 shows the two cases which can occur for a
mini-volume:

1. All necessary observations are embedded in the assigned processor.

2. Some necessary observations are embedded in neighboring processors.

One limitation of this parallel OI algorithm is that the ratio between overlap region and actual computatioaml

region should be small to provide a high degree of parallelism. This is the case for small numbers of processors.

Region of influence

• Observation

[] Overlap Region
m Calculation Region

O Region of influence

Figure 15: Overlap region between processors. The size of the region is determined by the radius
of influence, e.g. 1600krn

The time used to perform the quality control is strongly correlated to the number of observations available

in the region assigned to a processor. This motivates a task and data decomposition based on a bisectioning

algorithm[18], in order to obtain a better performance. Because this strategy does not necessarily guarantee
load balance the term data balanced strategy is used. Nevertheless, this strategy is in the class of a dynamical

load balancing strategies, determining the exact decomposition during runtime. The data balanced strategy
distributes on each processor an approximately equal number of observations.
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While the strategy is expected to perform very good for the quality control, it performs less efficient for the

matrix solve. The reason being, that the times performing the matrix solves are not only strongly to the
number of observations in the region assigned to a processor but also the number of mini-volumes in the

particular region.

A comparison between the striped and data balanced decomposition is shown in Figures 16-21 for 10,20 and

40 processors. It is obvious that fewer observations are located, for example, on the poles in contrast to, for

example, Europe. Therefore, the data balanced stripes on the poles are much larger than in Europe. This

leads consequently to the problem that different numbers of mini-volumes are assigned over different latitude

bands on the globe, thus, introducing load imbalance for the matrix solve.

The Figures 22-25 display the results for the most computational intense parts of the optimal interpolation

algorithm. They are the HUV quality control abbreviated with delhuv and the ZUV-analysis abbreviated

with ztwanl. For more algorithmic details it is referred to the source code [13]. Figures 22 and f:huv-perf-load

show the timings and the speedup obtained for both distributions with different numbers of processors.

Performance data for the stripped decomposition is displayed in Figure 22. An important result from the

experiments is that the time used for the quality control arid the matrix solve is very close to each other.

This influenced the time spend to parallelize the OI code equally between the quality control and the matrix
Solve.

For small numbers of processors (<= 10) it was possible to achieve a very good speedup for both algorithms.

To achieve a very good performance for small numbers of processors is especially of interest, since one of

the computers considered for operational use, is based on several Cray computers connected via a HIPPI
network.

For the data balanced decomposition a super linear speedup cold be achieved during the quality control. This

is motivated by the following facts. First, the fraction between observations in ghostpoint areas and the other

observations stored in the processor is large. Second, to determine the neighbors influencing an observation

a modified search routine is used. The performance gain while using the improved search algorithm is the

biggest the more data points are stored in a processor. This is the case for large latitude bands, as obtained
by using few processors. Third, while increasing number of processors the search of observations in the

ghostpoint area becomes dominant and the speedup slows down. Forth, regions which contain a only a few

observations perform the matrix solves very quickly. This is not the case for the striped decomposition, but

it is better for the data balanced distribution. While using 40 processors the performance of the HUV matrix

solve is almost the same for both decompositions (Table 2).

The performance can be improved further, while introducing a block distribution[20]. Instead of using the

block distribution, a cyclic distribution is used for the version 2.0my, simplifying the parallelization effort

drastically while increasing the memory consumption.

5.1 Version 2.0

The switch to the new version was necessary to improve the performance of the OI algorithm drastically.

Besides better performance, it is more stable, and produces better scientifically sound results. The perform-

ance increment is obtained while using LAPACK routines for the matrix solves, and linking the program
with a machine optimized versions of BLAS. Another important change was to eliminate and rewrite certain

diagnostic functions in the quality control. These routines inherently sequential in nature and contain many

file input and output operations, which were difficult to parallelize.

As depicted in Figure 26, the new OI algorithm has different hot spots in contrast to the old OI algorithm.

In the old version the times for the huv quality control and matrix solve were almost the same. In the new

version the zuvanl constitutes of 83% of the total runtime of the algorithm, while the huv quality control uses
only 5%. The total runtime could be improved by a factor of 4.

Table 1 shows the runtime of the sequential algorithm compiled with different options on SP2 nodes and DEC

Alpha workstations. Unfortunately, a valid license for the optimized BLAS and LAPACK libraries was not

available on the DEC Alpha workstations, the performance on this machine has to be viewed as preliminary.

More interesting are the times for the SP2 because of the availability of larger machines. Unfortunately,

it is not possible to compile the OI code on an RS6000 with an optimization level higher than two without

influencing the numerical stability of the computation. Inlining, performed with the option -pipa improves the
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runtime about 23%. Since this optimization step takes a long time during the compilation the timings given

for the parallel code are obtained only with the optimization level two on thin nodes of an SP2. In case wide

nodes should be available, the performance can be improved by another 22%. This increased performance

gain does not influence the parallelization strategy of the OI code of version 2.0.

An overall comparison of the speedup between the different versions using different decompositions is given
in Table 3.

As mentioned before, the load imbalance problem is differently solved in version 2.0my in contrast to the

older version. Instead of decomposing the domain in stripes or applying the data balanced decomposition,

a cyclic decomposition is implemented. The cyclic decomposition preserves the data balance in a natural

way. Figure 27 verifies that the cyclic decomposition solves the problem of the load imbalance, comparing the

runtimes for the quality control using the striped and the cyclic decomposition. The following preconditions

are responsible for a better load balance using the cyclic decomposition:

First, the time to calculate the quality control for one observation depends on the number observations which

are located in the region of influence (number of neighbors).

Second, from the distribution of the observations it is clear that the number of neighbors varies over the

domain. While there are clusters which have many observations and therefore many neighbors, other regions
do not.
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Figure 26: Fractions of the computational intense parts of the sequential optimal interpolation algorithm for
the versions 1.2s and 2.0my

Table 1: Performance of the Sequential Program

SP2 SP2 SP2 DEC Alpha DEC Alpha t,2
node type thin thin wide

comp. options -O2-pipa -O2 -O2 -O2 -04
data IO 1.21 1.91 1.22 6.55 6.53

delhuv 44.38 41.51 38.72 82.26 78.80

zuvanl 621.39 818.25 639.63 660.55 590.55

total zuv time 667.05 861.80 679.64 749.73 675.93

Note 0: all times are given in s

Note 1: -allign commons, no performance improvement.

Note 2:-O4 -math mathAibrary fast, not much improvement

Third, the number of grid volumes should be approximately equal to avoid extensive load imbalance in the
matrix solve.

For a striped decomposition, the condition to maintain approximately an overall equal number of neighbors

in the different processors, is violated leading to load imbalance.
For the data balanced decomposition the third condition is violated. One cold choose a data balanced

decomposition for the quality control and a stripped decomposition for the matrix solve, but this would still
violate the second condition.

An effective alternative to a region based decomposition (e.g. the striped and data balanced decompositions)

is the cyclic decomposition. For the quality control the observations are assigned in cyclic fashion in each
processor, similar to a cyclic decomposition as known from HPF. Analog, mini-volumes are assigned in cyclic

fashion to different processors for the matrix solve loop.

The cyclic decomposition has the advantage that conditions one to three are fulfilled, resulting in a simple

load balance algorithm for the quality control. The only problem remaining, is to show that the execution

Table 2: Comparison of the runtime of the versions 1.2 and _.0 using 40 processors using different

decompositions.

version version version

1.2 1.2 2.0

decomposition striped data balanced cyclic

delhuv 87.30 s 56.30 6.46 s

zuvanl 55.47 a 55.44 25.65 s
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Table 3: Speedup of the rspeedup of the versions 1.2 and 2.0 using _0 processors using different

decompositions.

version version version
1.2 1.2 2.0

decomposition striped data balanced cyclic

delhuv 1.0 1.6 13.5

zuvanl 1.0 i.O 2.2

times for all mini-volumes assigned with the cyclic decomposition to the different processors is almost the
same. This is unfortunately not the case, as shown later, justifying the use of more intelligent dynamical load

balancing strategy.
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Figure 27: Load imbalance using 8 processors for the quality control check using the block and

cyclic decomposition

The actual number of observations, which are reaccepted during the quality control, is rather small (as shown

in Figures 28 and 29). Thus, there is almost no overhead involved for redistributing reaccepted observations

to other processors, after the quality control is completed. The additional redistribution step is necessary to

update observations which are members of ghostpoint areas in other processors.

Due to the parallelization of the a problem in the sequential quality control program sequential program was
reveled. In the main loop of the buddy and gross check a reaccepted observation is immediately added to the

set of valid observations therefore influencing the next iteration of the loop over all observations.

This strategy has the disadvantage that the quality control is dependent on the order of the observations and a
parallelization would not be possible. To eliminate the data dependencies between the loops the new strategy

reaccepts observations only at the end of the quality control. Both strategies have scientific advantages and

disadvantages, which should be further explored. This resulted in plans at the DAO to redesign the current

quality control algorithm.

Naturally, the quality control is only scalable for processor numbers up to the number of observations which
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are suspect to the quality control check. In the example used about 300 observations had to be checked,

and about 30 of them are reaccepted(Figures 28 and 29). If the number of quality control failures are not

significantly larger than the number of processors the performance will degrade.
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Figure 28: Observations which have failed the HUV

quality control
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Figure 29: Observations which failed initially the HUV

quality control, but were reaccepted

Matrix Solve Figure 30 and 31 display the runtimes on different processors for the quality control (del-

huv) and the matrix solves (zuvanl) and their ranges (compare also Table 5). Thus, proving that the cyclic

decomposition is ideal for the quality control. Only two processor in the matrix solve algorithm have sig-

nificantly different load in contrast to the others. These processors contain the polar regions which will be

differently handled than the rest of the globe. Assigning fewer mini-volumes to the processors containing the

polar regions solves the problem of load imbalance. A scalable parallel algorithm for the optimal interpolation

algorithm is the result.

Table 4: Performance on 8 SP_ Processors

comp. options -02
Efficiency max rain median

data IO 0.92 1.30 1.21 1.25
delhuv 0.61 8.48 8.28 8.35
total zuvanl 1.13 95.55 86.21 90.25

Note O: al[times given in s
Note 1: communication done over Ethernet

Table 5: Performance

total

delhuv zuvanl
mean 6.18 17.17
minimum 5.78 15.74
maximum 6.46 25.65
variance 0.02 3.87
a 0.12 1.97

Note O: all times given in s
Note 1: communication done over Ethernet

on 40 SP_ Processors
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